• Title/Summary/Keyword: Waste solution

Search Result 1,043, Processing Time 0.033 seconds

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Study on the Improving Thermal and Mechanical Properties of Eco-friendly Materials used for Training Ammunition (연습용 탄약 친환경 재료의 내열성 및 기계적 특성 향상에 관한 연구)

  • Kim, Myung-Hyun;Shon, Byoung-Chul;Lee, Young-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.557-562
    • /
    • 2018
  • Unlike live ammunition which has killing power due to the use of high explosives, training ammunition has only the limited explosive effect needed for training purposes, so the risk of accidents is lowered. Because training ammunition is used in large quantities during military drills, the problem of environmental pollution occurs. As most of the waste is left out in the training field, using bio-degradable polymers such as Polylactic Acid (PLA) can provide a solution to these environmental issues. However, bio-degradable polymers such as PLA usually have poor thermal and mechanical properties compared with other general purpose polymers, so they need to be improved before they can be used for military purposes. In this study, Talc is added to the PLA used for the parts of Training Grenades to improve some of their properties and the changes of their thermal and mechanical properties were verified. In the case of the 1 wt.% ~ 5 wt.% PLA/Talc blends, the thermal properties were improved in proportion to the content of Talc, but the best mechanical properties were observed for the 1 wt.% and 3 wt.% PLA/Talc blends.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

Biosorption of Lead and Cobalt by Absidia coerulea and Thraustochitrium sp. (Absidia coerulea와 Thraustochitrium Sp. 에 의한 납과 코발트의 생물흡착)

  • Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2149-2161
    • /
    • 2000
  • Nonliving Absidia coerulea and Thraustochitrium sp. were used as biosorbents to remove lead and cobalt that are one of representative pollutant in wastewater and radioactive liquid waste. The optimum pH range for maximum lead and cobalt removal was increased 6.5~11.4 and 8.6~12.0 for Absidia coerulea and 4.2~10.5 and 8.9~11.6 for Thraustochitrium sp. to compared to biosorbent-free control, pH of 8.4~11.2 and 10.5~11.5, respectively. With 1 g biosorbent/L at initial solution pH 5.0. Absidia coerulea and Thraustochitrium sp. took up lead from aqueous solutions to the extent of 104 and 125 mg/g biomass, respectively, whereas Absidia coerulea and Thraustochitrium sp. at initial pH 6.0 took up only 2 and 20 mg/g biomass of cobalt, respectively. For initial 500 mg Pb/L at initial pH 5.0. optimum amount of biosorbent for maximum lead uptake was 0.2 g/L for Absidia coerulea and Thraustochitrium sp., whereas optimum 3.0 g biosorbent/L was needed for initial 200 mg Co/L at initial pH 6.0. Absidia coerulea and Thraustochitrium sp. had higher adsorption capacity for lead than that of cobalt.

  • PDF

Recovery of $H_2SO_4$from Sulfuric Acid Wastes by Diffusion Dialysis (확산투석에 의한 황산폐액으로부터 황산의 회수)

  • 정진기;남철우;정강섭;이재천
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • The recovery of $H_2$$SO_4$from sulfuric acid waste was attempted by a diffusion dialysis method using an anion extchange membrane. The effect of flow rate, temperature, concentration of metal ions on the recovery rate was studied. The recovery of $H_2$$SO_4$decreased with the concentration of $H_2$$SO_4$and flow rate. The recovery increased with the flow rate ratio of water/$H_2$$SO_4$solution upto 1 above which no further increase was observed. The flow rate did not affect the rejection of Fe and Ni ions. As a result, about 80% of $H_2$$SO_4$could be recovered from sulfuric acid wastes which contains 4.5M free$-H_2$$SO_4$at the flow rate of 0.26 $1/hr-m^2$. The concentration and purity of recovered $H_2$$SO_4$was 4.3M and 99.8%, respectively.

Design and Implementation of a Temporary Priority Swapping Protocol for Solving Priority Inversion Problems in MicroC/OS-II Real-time Operating System (MicroC/OS-II 실시간 운영체제에서의 우선순위 역전현상 해결을 위한 일시적 우선순위 교환 프로토콜 설계 및 구현)

  • Jeon, Young-Sik;Kim, Byung-Kon;Heu, Shin
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.463-472
    • /
    • 2009
  • Real-time operating systems must have satisfying various conditions such as effective scheduling policies, minimized interrupt delay, resolved priority inversion problems, and its applications to be completed within desired deadline. The real-time operating systems, therefore, should be designed and developed to be optimal for these requirements. MicroC/OS-II, a kind of Real-time operating systems, uses the basic priority inheritance with a mutex to solve priority inversion problems. For the implementation of mutex, the kernel in an operating system should provide supports for numerous tasks with same priority. However, MicroC/OS-II does not provide this support for the numerous tasks of same priority. To solve this problem, MicroC/OS-II cannot but using priority reservation, which leads to the waste of unnecessary resources. In this study, we have dealt with new design a protocol, so called TPSP(Temporary Priority Swap Protocol), by an effective solution for above-mentioned problem, eventually enabling embedded systems with constrained resources environments to run applications.

Selection of Optimum System in Constructed Wetlands for Treating the Hydroponic Waste Solution Containing Nitrogen and Phosphorus (질소 및 인 함유 폐양액 처리를 위한 최적 인공습지 시스템 선정)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Lee, Choong-Heon;Choi, Jeong-Ho;Kim, Hong-Chul;Lee, Sang-Won;Ha, Yeong Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.764-771
    • /
    • 2012
  • In order to develop constructed wetlands for treating hydroponic wastewater in greenhouse, actual constructed wetlands were used the obtained optimum condition in previous study, and the removal rate of pollutant in the water according to 4 kinds connection method of piping such as system A (UP-UP stream), system B (UP-DOWN system), system C (DOWN-UP stream) and system D (DOWN-DOWN stream) were investigated. Removal rate of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P) by system A (UP-UP stream) connection method in actual constructed wetlands were slightly higher than other systems. At the system A, the removal rate of BOD, COD, SS, T-N and T-P were 88, 77, 94, 54 and 94%, respectively. Under different hydroponic wastewater loading, the removal rates of pollutants were higher in the order of $75L\;m^{-2}day^{-1}{\fallingdotseq}150L\;m^{-2}day^{-1}$ $$\geq_-$$ $300L\;m^{-2}day^{-1}$. Therefore, optimum connection method was system A for treating hydroponic wastewater in greenhouse.

A Study on the pretreatment of Activated Sludge for Bio-hydrogen Production process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Kim Dong Kkun;Kim Ji Seong;Kim Ho Il;Lee Yu Na;Pak Dae Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.21-33
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operating at $35^{\circ}C$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods is most efficient process for sludge treatment. The pre-treatment activated sludge was tested to conform hydrogen production potential in batch experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition.

  • PDF