• Title/Summary/Keyword: Waste solution

Search Result 1,048, Processing Time 0.026 seconds

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook;Kim, Seung-Soo;Kim, Gye-Nam;Han, Gyu-Seong;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.840-846
    • /
    • 2016
  • Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

Basic Studies on the Treatment and Recovery of Silver Contained in Waste Photographic Fixing Solution Using D2EHPA as an Extractant (D2EHPA를 추출제로 한 사진폐액 함유 은의 처리 및 회수에 대한 기초연구)

  • Chung, Won-Ju;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.288-293
    • /
    • 2006
  • Basic investigations have been carried out for the solvent extraction of silver contained in the waste photographic fixing solution using D2EHPA as an extractant. Extraction experiments were conducted using artificial waste solution which was made by dissolving $AgNO_3$ in distilled water along with actual waste fixing solution. For artificial waste solution, the extraction of silver was found to occur very rapidly at the initial stage of extraction. In addition, more silver was extracted as the volumetric ratio between aqueous phase and organic phase was decreased. The volumetric ratio of organic extractant to diluent was also taken as an influential variable and the extracted amount of silver was observed to decrease with temperature. The characteristics of silver extraction for actual fixing solution was generally similar to that for artificial waste solution. Regarding the kinetic analysis, the extraction of silver contained in the actual solution was observed to follow a first order reaction.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Effects of Waste Nutrient Solution on Growth of Chinese Cabbage (Brassica campestris L.) in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • BACKGROUND: Reuse of waste nutrient solution for the cultivation of crops could lead to considerable conservation of water resources, plant nutrients, and water quality. Therefore, this study was conducted to evaluate the potential for reducing the use of chemical fertilizer in Chinese cabbage cultivation via the reuse of waste nutrient solution as an alternative irrigation resource. METHODS AND RESULTS: The nutrients supplied in the waste nutrient solution consisted of 1474.5, 1285.1, 991.6, and 872.6 mg/L for $K+$, ${NO_3}^-$, $Ca^{2+}$ and ${SO_4}^{2-}$, respectively. At 56 days after transplanting (DAT), the leaf length of Chinese cabbage plants irrigated with the waste nutrient solution treatment was significantly higher than that of plants irrigated using a conventional groundwater treatment. Additionally, the leaf width, fresh weight and dry weight of the plants irrigated with the waste nutrient solution were similar or greater than that of plants irrigated with a conventional treatment. Furthermore, the growth of plants treated with the waste nutrient solution +25% fertilizer was the highest among all tested treatments. CONCLUSION(s): These results indicate that the waste nutrient solution can be used as an alternate water resource for crop cultivation. In addition, it can contribute to reduce the fertilizer and to obtain the higher crop yield of Chinese cabbage.

A Study on characteristics of AUC Powder Prepared with the Waste AC Solution (폐 AC용액으로부터 제조된 AUC분말의 특성에 대한 연구)

  • 정경채;김태준;최종현;박진호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.332-338
    • /
    • 1996
  • This study was investigated on the recycle feasibility of the waste AC(Ammonium Carbonate) solution produ-ced in a commercial AUC(Ammonium Uranyl Carbonate) conversion plant. AUC particles were produced with the AC solution which was prepared with AC solid-agent instead of ammonia and carbon-dioxide gases. As the results particles of monoclinic shapes has been obtained regardless of the pH change if the carbonate concentration is sufficient in the mother liquore. Also a lot of twinned or aggregated particles were formed in case of the increase of pH in the reaction system but not affected in the change of temperature. Consequen-tly the characteristics of the particles which converted for AUC were produced withAC solution to UO2, particles specific surface area shape sintered density and others were similar to that of the particles which were produced with gases only when the pellets are fabricated in the nuclear fuel manufacturing process So the waste AC solution which is produced in the commercial AUC conversion plant is possible to recycle.

  • PDF

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross (알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究))

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.3-7
    • /
    • 2007
  • Waste aluminum dross was processed to prepare alum with sulfuric acid, and poly aluminum chloride(PAC) with hydrochloric acid. Metallic aluminum remained in the waste dross was dissolved into the sulfuric acid solution, and the solution could be used as alum for water treatment chemicals after adjusting the required alumina concentration and pH of the solution. Also, it was dissolved into the hydrochloric acid solution and processed to make PAC solution. Compared with the conventional method for preparation of alum and PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste disposed to landfill.