• Title/Summary/Keyword: Waste seaweed

Search Result 21, Processing Time 0.025 seconds

Storage of Waste-Brown Seaweed and Degradation of Alginate Using Microorganism (미생물을 이용한 미역폐기물의 저장 및 알긴산염 저분자화)

  • An, Sang Jun;Kim, Yeong Suk;Park, Gwon Pil
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.313-318
    • /
    • 2004
  • We studied a storage of waste-brown seaweed at room temperature and degradation of alginate in seaweed by microorganism DS-02. The seaweeds, mixed with 5.0 wt% DS-02 and sealed in vinyl package without any other treatment, could be stored longer than 1 year without spoilage at room temperature. During the storage process, the alginate of seaweed was decomposed by enzyme of DS-02 and the molecular weight of alginate decreased to about 1/10 of initial quantity. DS-02 growed as fast as it had maximum weight after 24 hour culture and it's enzyme had a maximum activity of alginate degradation at $40^{\circ}C.$ The seaweed sample became particles in DS-02 culture solution and the M. W of alginate decreased to about 1/10 of initial value after 24 hour decomposition. The effect of alginate degradation with DS-02 was similar to that of degradation with 3.0 M HCI solution for 24 hour.

The Permeability Characteristics of Solidified Soil Using Wastes (폐기물을 이용한 고화처리토의 차수효과)

  • Kim Inbae;Koopman Ben.;An Jinsun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.388-394
    • /
    • 2004
  • Seaweed waste(SWW) was used to improve the liner effect in recycling of dredged soil as the landfill liner. It was found that the compressive strength became somewhat lower when SWW was added than that was when Ordinary Port-land Cement(OPC) only was added. The permeability coefficient, however, became lower in this case which showed the lowest permeability coefficient when the addition of SWW was one percent. Hence, to comply with the regulations for the compression strength and permeability coefficient of landfill liner, the addition of OPC should be over eight percent and that of seaweed waste one percent. The results of leaching test showed that the solidified material was not against the laws of waste control, so it is possible to use as the landfill liner and to expect sufficient economic effects because wastes such as dredged soil and seaweed can be recycled.

Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea

  • Sunwoo, In Yung;Nguyen, Trung Hau;Sukwong, Pailin;Jeong, Gwi-Teak;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2018
  • The waste seaweed from Gwangalli beach, Busan, Korea was utilized as biomass for ethanol production. Sagassum fulvellum (brown seaweed, Mojaban in Korean name) comprised 72% of the biomass. The optimal hyper thermal acid hydrolysis conditions were obtained as 8% slurry contents, 138 mM sulfuric acid, and $160^{\circ}C$ of treatment temperature for 10 min with a low content of inhibitory compounds. To obtain more monosaccharides, enzymatic saccharification was carried out with Viscozyme L for 48 h. After pretreatment, 34 g/l of monosaccharides were obtained. Pichia stipitis and Pichia angophorae were selected as optimal co-fermentation yeasts to convert all of the monosaccharides in the hydrolysate to ethanol. Co-fermentation was carried out with various inoculum ratios of P. stipitis and P. angophorae. The maximum ethanol concentration of 16.0 g/l was produced using P. stipitis and P. angophorae in a 3:1 inoculum ratio, with an ethanol yield of 0.47 in 72 h. Ethanol fermentation using yeast co-culture may offer an efficient disposal method for waste seaweed while enhancing the utilization of monosaccharides and production of ethanol.

Biosorption of Heavy-metal Ions by Waste Brown Seaweed and Their Derivatives (미역 폐기물 및 미역폐기물 유도체에 의한 중금속이온의 생물흡착)

  • 박권필;김태희;김영숙;차왕석;우명우
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.153-158
    • /
    • 2001
  • The biosorption abilities of different parts of waste brown seaweeds and their derivatives to remove heavy metals (Cd, Zn, Pb, Cu, Fe, Ni, Mn) from waste were evaluated. The two parts of waste brown seaweeds (Undaria pinnatifida) were stems and sporophyls, and the brown seaweed derivatives were alginic fibers, active carbon added alginate(AC-alginate) and dealginate. The abilities of the sporophyls to adsorb the heavy metal ions were higher than those of stems, and those of alginates were slightly higher than those of dealginate in single ion solution. With decreasing the size of biosorbents, the velocity and the amount of adsorption increased. The abilities of alginate to remove the heavy metal ions increased in multi-ion solutions by adding active carbon to alginate. The selectivity of these biosorbents(alginate, AC-alginate) to lead ion was highest and to manganese ion was lowest.

  • PDF

Extraction of Alginate from Waste-Brown Seaweed and Use of Dealginate (미역폐기물로부터 알기네이트의 추출 및 디알기네이트의 이용)

  • 박권필;김태희;김영숙
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Effective alginate extraction from waste-brown seaweeds was studied. The waste-brown seaweeds almost consist of stems of seaweeds. Alginate could be obtained from the stems as well as leaves of seaweed. Ultrasonic vibration(47kHz) facilitated filtering step in the alginate extraction process. Among various alkalies for alginate extraction, $NaHCO_3$ was most appropriate concerning use of dealginates. The yield of alginate extraction using $NaHCO_3$ 2wt% solution was 19.3% at $60^{\circ}C$. The dealginates from $NaHCO_3$-extraction process have been found most suitable food for red-worms.

Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge

  • Shin, Sang-Ryong;Lee, Mo-Kwon;Im, Seongwon;Kim, Dong-Hoon
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.449-455
    • /
    • 2019
  • To investigate the effect of seaweed (SW) addition on anaerobic co-digestion of food waste (FW) and sewage sludge (SS), batch experiments were conducted at various substrate concentrations (2.5, 5.0, 7.5, and 10.0 g volatile solids (VS)/L) and mixing ratios ((FW or SS):SW = 100:0, 75:25, 50:50, 25:75, and 0:100 on a VS basis). The effect of SW addition on FW digestion was negligible at low substrate concentration, while it was substantial at high substrate concentrations by balancing the rate of acidogenesis and methanogenesis. At 10 g VS/L, $CH_4$ production yield was increased from 103 to $350mL\;CH_4/g$ VS by SW addition (FW:SW = 75:25). On the other hand, SW addition to SS enhanced the digestion performance at all substrate concentrations, by providing easily biodegradable organics, which promoted the hydrolysis of SS. $k_{hyd}$ (hydrolysis constant) value was increased from 0.19 to $0.28d^{-1}$ by SW addition. The calculation showed that the synergistic $CH_4$ production increment by co-digesting with SW accounted for up to 24% and 20% of total amount of $CH_4$ production in digesting FW and SS, respectively.

Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production (홍조류, 갈조류, 녹조류를 이용한 바이오에탄올 생산 및 폐 해조류 슬러리의 중금속 생물흡착)

  • Sunwoo, InYung;Ra, ChaeHun;Kwon, SeongJin;Heo, JiHee;Kim, Ye-Jin;Kim, JiWoo;Shin, JiHo;Ahn, En-Ju;Cho, YuKyeong;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.414-420
    • /
    • 2014
  • The seaweeds with high carbohydrate ratio Gelidium amansii, Saccharina japonica and Enteromorpha intestinalis were used as red, brown, and green seaweeds, respectively. Thermal acid hydrolysis, enzymatic saccharification and fermentation were carried out using those seaweeds to produce ethanol. The ethanol concentrations from red, brown and green seaweed were 14.8 g/L, 11.6 g/L and 9.9 g/L, respectively. After the production of ethanol, the seaweeds were reused to absorb heavy metal. The maximum biosorption ratio was Cu(II) (89.6%), Cr(III) (82.9%), Ni(II) (66.1%). Cu(II) had the highest affinity with 3 waste seaweeds. Red seaweed was verified the most effective substrates to both process.

An Exploratory Study on the Ecosystem Service and Benefit Indicators of Natural Seaweed Beds (천연 해조장 생태계 서비스 및 편익지표에 관한 탐색적 연구)

  • Kang, Seok-Kyu
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.3
    • /
    • pp.53-69
    • /
    • 2016
  • The purpose of this study is to explore the ecosystem service and benefit indicators of natural seaweed beds. Ecosystems of natural seaweed beds provide a wide range of services and benefits to human society including provisioning services, regulating services, supporting services, and cultural services. Indicators for each of the ecosystem services are chosen by marine plants ecologists and as follows. Ecosystem indicators of natural seaweed beds for provisioning services are well-being food(amount of seaweed harvested/amount of fish landed, fish biomass, area of natural seaweed beds, the number of species, contribution to the second production), raw materials(amount of biomass by breed, amount of aquaculture feed), genetic resources(amount of genetic material extracted, amount of genetic material contained by age and habitat), and medicinal resources(amount of medicinal material extracted). Ecosystem indicators of natural seaweed beds for regulating services are air purification(amount of fine dust/NOx or $SO_2$ captured), climate regulation(amount of $CO_2$ sequestered), waste treatment(amount of N, P stored, biochemical degradation capacity COD), and costal erosion prevention(length and change of natural coast line, amount of sediment prevented). Ecosystem indicators of natural seaweed beds for supporting services are lifecycle and maintenance(primary production, contribution to the second production) and gene pool protection(amount of compositional factors in ecosystem, introduced species). Ecosystem indicators of natural seaweed beds for cultural services are recreation and tourism(the number of visits of an area) and information for cognitive development(amount of time spent in education, research and individual learning about ecosystem of natural seaweed beds).

Extraction and Degradation of Alginate from Brown Seaweed Stem Using Microorganism (미생물을 이용한 미역줄기에서 알긴산염 추출 및 저분자화)

  • Ahn Seong-Jun;Kim Young-Sook;Park Kwon-Pil
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1139-1144
    • /
    • 2004
  • We studied a extraction and degradation of alginate from seaweed-stems using microorganism DS-02. DS-02 has a maximum growth rate at $30^{\circ}C$ and the enzyme has a maximum activity of alginate extraction at $35^{\circ}C.$ The yield of alginate extraction using DS-02 is about $16.0{\%}$ for 3.0 hour and molecular weight of the alginate decreased to about 1/8 of initial value after 24 hour extraction. Alginate extraction method by DS-02, compared with general alkali-extraction method, has an advantage of decreasing the molecular weight of alginate during extraction.