• 제목/요약/키워드: Waste of Plastic Clay

검색결과 11건 처리시간 0.032초

점토소성 폐기물을 이용한 콘크리트용 순환골재로써 활용가능성에 관한 기초적 연구 (A Fudamental Study on Use Possibility as Recycled Aggregate that Use Waste of Plastic Clay)

  • 조명근;류현기
    • 한국건축시공학회지
    • /
    • 제7권2호통권24호
    • /
    • pp.93-98
    • /
    • 2007
  • Waste of Plastic that is waste tile and waste interlocking block result, waste tile and waste interlocking block that execute an experiment to foretell practical use possibility availability as recycled aggregate for concrete giving change in the principal parts rate for coarse aggregate recycled aggregate appeared in the world by available thing to coarse aggregate to rate 10% but necessity that present amount used establishing material application standard that is crushed than uniform application standard to receive entropy of re-fresh concrete quality is judged to be.

불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개 (Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils)

  • 이창수;윤석;이재원;김건영
    • 터널과지하공간
    • /
    • 제29권1호
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model(BBM)은 응력의 변화에 따른 부피변화뿐만 아니라 흡입력의 변화에 따른 팽윤거동을 설명할 수 있으며, 흡입력 변화에 따른 점착력과 선행압밀응력의 변화와 온도변화에 따른 선행압밀응력의 변화를 고려할 수 있다. 따라서, 고준위방사성폐기물 처분시스템에서 공학적방벽재로 고려되고 있는 벤토나이트 완충재의 열-수리-역학적 복합거동을 예측 및 분석하는 것에 많이 활용되고 있다. 그러나 우리나라의 암반 및 지반 공학자들에게 잘 알려져 있지 않기 때문에 BBM을 소개하고자 한다. BBM은 불포화 토질의 역학적 거동을 모사하기 위해 Modified Cam Clay(MCC) 모델을 확장하여 만들어 졌기 때문에 본 고에서는 먼저 MCC 모델을 간략하게 소개하고, 열-탄소성 모델인 BBM을 상세히 소개하였다.

폐유리를 재활용한 인공경량골재의 발포기구 (Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass)

  • 강신휴;이기강
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

Carbon nanotubes formation on clay and fly ash from catalytic thermal decomposition of recycled polypropylene

  • Nur A. Atikah Kamaruddin;Norzilah A. Halif;Siti A. Hussin;Mohd. N. Mazlee
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.173-181
    • /
    • 2024
  • Fly ash, plastic waste, and clay are mineral materials and residues commonly found in Malaysia. In this study, these materials were fully utilized as raw materials for synthesizing carbon nanotubes (CNTs). Recycled polypropylene, previously used as a food container, served as a carbon source. Fly ash and clay were explored as potential substrates for CNTs growth. The recycled polypropylene was thermally decomposed at 900 ℃ in an inert environment for 90 minutes. Carbon atoms released during this process were deposited on fly ash and clay substrates, which had been immersed in a ferrocene solution to provide a metal catalyst for CNTs growth. The deposited products were characterized using a Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). Morphological analysis revealed that both fly ash and clay were coated with fiber-like structures, confirmed to be CNTs based on a diffraction peak around 26° from the XRD pattern. In conclusion, clay and fly ash demonstrate the potential to be utilized as substrates for CNTs formation.

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구 (A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness)

  • 류현기;박정민;정재호;김의창;윤승조
    • 한국건설순환자원학회논문집
    • /
    • 제6권2호
    • /
    • pp.119-127
    • /
    • 2011
  • 본 연구의 목적은 폐도자기 분말도 변화에 따른 순환골재 강도 증진에 관한 연구로 유동성은 폐도자기 분말 치환율이 증가할수록 유동성이 감소하는 경향으로 나타났으며, 공기량은 KS 한도범위를 만족하는 것으로 나타났다. 압축강도는 순환골재 및 폐도자기 분말 치환율이 증가할수록 증가경향이고, 내구성으로 건조수축에 의한 길이변화는 폐도자기 미분말이 커질수록 다소 완만한 건조수축율을 나타내었고, 또한 단열온도상승은 순환골재 대체율 및 폐도자기 미분말이 증가할수록 최고온도에서 약 $6{\sim}10^{\circ}C$정도 낮게 나타내어 수화열에 의한 균열저감 효과를 발휘하였다. 순환골재 사용량을 30%정도 권장 하고 있지만 점토인 폐도자기의 분말도를 조절하여 사용할 경우 순환골재의 다량 사용시에는 콘크리트의 제반성상에 문제가 없을 것으로 판단되었다.

  • PDF

Mechanical behaviour of waste powdered tiles and Portland cement treated soft clay

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Mustaffa, Zahiraniza;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.37-47
    • /
    • 2019
  • The main objective of this study is to evaluate and compare the efficiency of ordinary Portland cement (OPC) in enhancing the unconfined compressive strength of soft soil alone and soft soil mixed with recycled tiles. The recycled tiles have been used to treat soft soil in a previous research by Al-Bared et al. (2019) and the results showed significant improvement, but the improved strength value was for samples treated with low cement content (2%). Hence, OPC is added alone in this research in various proportions and together with the optimum value of recycled tiles in order to investigate the improvement in the strength. The results of the compaction tests of the soft soil treated with recycled tiles and 2, 4, and 6% OPC revealed an increment in the maximum dry density and a decrement in the optimum moisture content. The optimum value of OPC was found to be 6%, at which the strength was the highest for both samples treated with OPC alone and samples treated with OPC and 20% recycled tiles. Under similar curing time, the strength of samples treated with recycled tiles and OPC was higher than the treated soil with the same percentage of OPC alone. The stress-strain curves showed ductile plastic behaviour for the untreated soft clay and brittle behaviour for almost all treated samples with OPC alone and OPC with recycled tiles. The microstructural tests indicated the formation of new cementitious products that were responsible for the improvement of the strength, such as calcium aluminium silicate hydrate. This research promotes recycled tiles as a green stabiliser for soil stabilisation capable of reducing the amount of OPC required for ground improvement. The replacement of OPC with recycled tiles resulted in higher strength compared to the control mix and this achievement may results in reducing both OPC in soil stabilisation and the disposal of recycled tiles into landfills.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구 (Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors)

  • 김진기;유성환;임봉수
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

유효응력에 근거한 불포화토의 역학적 구성모델 (Constitutive Model for Unsaturated Soils Based on the Effective Stress)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제27권11호
    • /
    • pp.55-69
    • /
    • 2011
  • 다양한 지반공학적 문제들에서 불포화 상태의 중요성이 강조되면서, 불포화 지반의 열-수리-역학적 현상들에 대한 거동특성을 모사하기 위한 역학적 구성모델 개발이 진행되고 있다. 본 연구에서는 Bishop의 유효응력 정의에 근거한 불포화 지반의 역학적 탄소성 구성모델을 제시하였다. 유효응력에 근거한 구성관계는 유효응력과 온도를 주 변수로 증분 형식으로 표현되었으며, 이를 이용하여 응력 갱신과 강성 텐서를 산정하였다. 개발된 구성모델을 이용하여 THM 현상을 포함하는 불포화토의 1차원 거동, 불포화토의 삼축 압축시험, 그리고 고준위 방사성폐기물 시설의 완충재의 거동 특성에 관한 예제 해석을 수행하여 해의 안정성과 구성모델의 적용성에 대하여 논의하였다. 수치해석결과는 개발된 역학적 구성모델이 THM 현상의 매우 복잡한 거동을 효과적으로 모사할 수 있었으며, 일반적인 불포화토의 거동 해석뿐만 아니라 다양한 환경 조건하에서의 THM 거동 해석에 적용이 가능할 것으로 판단된다.