• Title/Summary/Keyword: Waste metal resource

Search Result 47, Processing Time 0.021 seconds

Study on the Synthesis Method of Simulated CRUD for Chemical Decontamination in NPPs (원전 화학제염을 위한 모의크러드 제조방법 연구)

  • Kang, Duk-Won;Kim, Jin-Kil;Kim, Kyeong-Sook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • As nuclear power plants are getting older, interests on a decontaminating process are increasingly attracting more attention. Chemical decontamination is crucial to lower the production of radioactive waste and radiation dose rate. Prior to this, oxidizers and detergents for target material should be chosen so as to decontaminate major systems and components of a nuclear power plant chemically. In order to decontaminate it properly, it is crucial to have information about the chemical composition and crystalline structure of CRUD, analyzing its samples from the target or the decontamination system with components. However, there is no program which enables the extraction of samples directly from the object or the decontamination system with components carrying genuine radioactivity. Therefore, it is limited to samples from corrosion products carrying partial radioactivity as a resource. The composition of CRUD varies considerably depending on refueling cycle because it is closely related to the constituent of basic material. After settling a target, it is crucial to analyze and obtain analytical information about CRUD as a decontamination target. In this paper, various technologies for manufacturing simulated CRUD are introduced as alternatives to unattained samples. A metal oxide or metal hydroxide was used to synthesize simulated cruds having chemical compositions and crystalline stricture similar to the actual one by 12 different methods. CRUD 4(metal oxides in the autoclave vessel) and CRUD 10(metal oxides in a crucible after hydrazing pretreatment)were chosen as the best method for Type 1 and Type 2.respectively. As these CRUD can be synthesized easily without using any specialized equipment or reagents in a short time and in large quantities, they are expected to stimulate the development of decontaminating agents and processes.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

On the Generation and Processing of the Sludge Containing Heavy Metals in Korea (우리나라 重金屬 함유 汚泥의 發生과 處理)

  • On, Jae-Hyun;Kim, Mi-Sung;Shin, Hee-Duck
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.3-16
    • /
    • 2004
  • There are over 190,000 tons per year of the sludge containing heavy metals (SHM) generated from industries in Korea. The SHM is so hazardous waste, it needs proper intermediate treatment before final disposal. At present, the common intermediate treatment and final disposal technologies of SHM are solidification and landfill. However, the future treatment and disposal technologies of SHM will be carry out to fulfill in both the environmental aspect and resource recycling. Thus, how to reduce the generation of SHM and recycle the valuable metal from SHM become the major subjects in the global world. In this article, in order to prospect the effective processing of SHM, the generation and processing of the sludge from plating wastewater, the research and development of valuable metal recycling technology and problems were summarized.

A Study on the Horizontal and Vertical Distribution of Heavy Metal Elements in Slime Dump from Dukum Mines, Korea (덕음광산 선광광미와 주변토양의 중금속에 대한 수평.수직적인 분산에 관한 연구)

  • 박영석
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.91-100
    • /
    • 2000
  • It has been more than ten years since Dukun mine was abandoned. Tailings of waste deposits and slime dumps in the abandoned Dukum mine have been left to be deserted for fifty years. The results of fifty years of neglecting are nothing short of major environmental problems. Slime dumps have been exposed to air and water in the mine over ten years and then soil profile has been formed well. Soil in the upper layer (A horizon) is the light gray color due to the leaching of cations. Soil in the lower layer (A2 horizon, 0.2∼0.3m)is tinted with reddish brown and yellowish brown color due to the development of iron oxides and iron hydroxides. Soil in the lower part of B horizon of (1.0∼3.0m) with the growth of copper and zinc oxides exposes to the bluish green, light blue, and dark gray. Ranging from 3m to 8m in depth, 85 samples were taken from 22 sampling sites with 50m intervals located on the slime dump area with hand auger and trench (open cut). As tailings was distributed, heavy metal elements extracted by the process of surface water and ground water move and disperse in to the hydrosphere. Waste dumps were distributed in and around the mine and water draining from those dumps be a potential source of contamination. Soils, thus, can be dispersed into downslope and downstream through wind and water by clastic movement. These materials may be deposited in another horizon if the water is withdrawn, or if the materials are precipitated as a result of differences in pH, or other conditions in deeper horizons. These were primarily associated with acid mine drainage. The characteristics and rate of release of acid mine drainage are influenced by various chemical and biological reactions at the source of acid generations. Prolonged extration of heavy metal elements has a detrimental effect on the agricultural land and residental area. Twenty soil samples were collected from the agricultural land in the area (0∼30 cm). Seventeen samples were also taken from the sediment in the stream running alongside the dumps. The dispersion patterns of heavy metal elements are as follows: The content of As ranged 2∼6 ppm in a horizon, 20∼125 ppm in B horizon with large amount of clay mineral is concentrated and the content of Cd ranged 1∼2 ppm in A horizon, 4∼22 ppm in B horizon. Like Cd, the content of As, Cu, Zn, Pb in B horizon is higher than that in A horizon (approximately 5∼100 times). When soil formation proceeds in stages, it is necessary to investicate the B horizon with the concentration of heavy metal and preventive measures will have to established.

  • PDF

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products (재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교)

  • Park, Sung Cheol;Kim, Yong Hwan;Shin, Ho Jung;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.55-62
    • /
    • 2021
  • In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.

Effect of Composted Medicinal Herb Waste on Soil Chemical Properties and Rubus coreanus Miquel (Bokbunja) Quality (한약추출박 퇴비가 토양의 화학적 특성 및 복분자 품질에 미치는 영향)

  • Kim, Seong-Jo;Kim, Jae-Young;Baek, Seung-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.472-481
    • /
    • 2011
  • In order to reuse remnants of medicinal herb extracts as an environment-friendly manure, fermented compost made from medicinal herb waste (MHWC), poultry manure compost (PMC) and MHWC+PMC (1:1, w/w) were applied on upland soil cultivated with 2 year-old Bokbunja plants. The results of the changes of soil chemical properties on upland soil, the yield and the sugar contents of the fruit harvested were summarized as follows. The pH in soils treated with composts (STCs) was significantly changed (p<0.05) compared with untreated control (UC) group. The electrical conductivity (EC) in MHWC group was decreased 0.46-0.56 times compared with UC, and it was different from PMC groups. The contents of organic matter and total nitrogen were increased in all of the treatments and MHWC group was the highest among the all groups. The content of available phosphorous was different by types and amounts of the composts. The content of heavy metal in all groups did not exceed the standard content for soil contamination. The yield and the sugar contents of the fruit harvested were the highest in the treatments of MHWC. In conclusion, MHWC is an effective compost resource on improvement of soil environment and promoting the fruit qualities.

Behavior and Geochemical Characteristics of Au and Heavy Metals in the Water System at the Abandoned Bonjeong Gold Mine (본정 함금 폐광산 주변수계 내 Au와 중금속의 거동 및 지화학적 특성)

  • Cho, Kang-Hee;Kim, Bong-Ju;Oh, Su-Ji;Choi, Nag-Choul;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.363-373
    • /
    • 2013
  • This study investigates the dispersion and behavior of Au and heavy metals in the water system (soil, AMD and stream sediment) at the abandoned Bonjeong gold mine, based on XRD, aqua regia, sequential extraction, and physico-chemical analyses. The XRD analyses targeted quartz and kaolinite in the mine waste soil and quartz and goethite in stream sediment. The physico-chemical analyses of AMD with increasing distance from water system showed that pH increased from 3.00 to 3.19 and Eh decreased from 450 to 396 mV. The Au content in AMD ranged from 0.68 to 0.97 mg/L upstream, but was not detected downstream. The Au content of stream sediment was 13.76 to 22.85 mg/kg. Sequential extraction from stream sediment revealed 10.84% exchangeable (STEP I), 11.09% carbonates (STEP II), 25.53% Fe-Mn oxides (STEP III), 26.62% organic matter (STEP IV), and 24.61% residual (STEP V).

A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System (LiCl-KCl-UCl3-NdCl3 system에서 U 및 Nd 분리에 관한 기초연구)

  • Kim, Tack-Jin;Ahn, Do-Hee;Eun, Hee-Chul;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In case of high contents of rare earths in the LiCl-KCl salt, it is not easy to recover U and TRU metals as a usable resource form from LiCl-KCl eutectic salts generated from the pyroprocessing of spent nuclear fuel. In this study, a conversion of $UCl_3$ into an oxide form using $K_2CO_3$ and an electrodeposition of $NdCl_3$ into a metal form in $LiCl-KCl-UCl_3-NdCl_3$ system were conducted to resolve the problem. Before conducting the conversion, experimental conditions for the conversion were determined by performing a thermodynamic equilibrium calculation. In this study, almost all of $UCl_3$ disappeared in the LiCl-KCl salt when the injection of $K_2CO_3$ reached theoretical equivalent for the conversion, and then $NdCl_3$ was effectively electrodeposited as a metal form using liquid zinc cathode. After that, the LiCl-KCl salt became transparent, and uranium oxides were precipitated to the bottom of the LiCl-KCl salt. These results will be utilized in designing a process to separate U and rare earths in LiCl-KCl salt.