• Title/Summary/Keyword: Waste material

Search Result 1,699, Processing Time 0.027 seconds

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.

Basic Study on the Characteristics of Wooden Sidewalk Pavement Material using Wood Waste Chip (폐목재 칩을 활용한 목질계 보도포장재의 특성에 대한 기초연구)

  • Choi, Jae Jin;Song, Jin Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.413-420
    • /
    • 2011
  • An experiment was conducted to suggest the road pavement material combining wooden chip crushed from little useful roots and branches from logging sites or wood waste from construction sites with urethane resin. For the specimen, the mass ratio of urethane resin to construction wood waste chip/lumber waster chip was set to three different levels of 0.5, 0.75, and 1.0, which was measured, mixed with mixer, and molded; 7 days after, tensile strength test, elasticity test using golf balls and steel balls, permeability coefficient measurement, and flammability test were executed. As the result, the tensile strength of the specimen at the dry state in the air exhibited the range of 0.2-1.1MPa, and there was no change after 7 days of aging. When submerged in water, however, the strength was partially diminished; the diminishing rate was greater for less urethane resin usage, and therefore it appears desirable to set the mass ratio of resin to the wood waste chip over 0.75 to consider the moisture intrusion by precipitation and such. As the result of elasticity test, the GB and SB coefficients of the specimen using wood waste chips and urethane resin were measured to be low at below 20%, exhibiting excellent elasticity as road pavement material. Also, the permeability coefficient was over 0.5mm/sec for specimens of all combinations, exceeding the standard value required after construction for permeable pavement material, and the flammability of wood-type pavement material was evaluated to have no practical issues.

A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository (고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정)

  • Yoon, Seok;Lee, Min-Soo;Kim, Geon-Young;Lee, Seung-Rae;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.55-64
    • /
    • 2017
  • A geological repository has been considered one of the most adequate options for the disposal of high-level radioactive waste. A geological repository will be constructed in a host rock at a depth of 500~1,000 meters below the ground surface. The geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is very important to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. High temperature in a disposal canister is released into the surrounding buffer material, and thus the thermal transfer behavior of the buffer material is very important to analyze the entire disposal safety. Therefore, this paper presents a thermal conductivity prediction model for the Kyungju compacted bentonite buffer material which is the only bentonite produced in Korea. Thermal conductivity of Kyungju bentonite was measured using a hot wire method according to various water contents and dry densities. With 39 data obtained by the hot wire method, a regression model to predict the thermal conductivity of Kyungju bentonite was suggested.

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository

  • Lee, Jae-Owan;Cho, Won-Jin;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.139-150
    • /
    • 1999
  • The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/$\textrm{cm}^2$ to 190.2 Kg/$\textrm{cm}^2$ under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled off to nearly constant value.

  • PDF

Development of material for a Light weight partition wall using material of Gypsum (석고 재료를 이용한 경량칸막이 벽체 소재 개발에 대한 연구)

  • 박준철;윤요현;류희정;최영준;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.134-137
    • /
    • 2000
  • A study on the development of material for a light weight partition wall using material of gypsum and waste paper is be considered to improve workability, setting time, properties of strength by use of $\beta$-Gypsum for controling setting time. According th the experiments, as quantity of gypsum in binder increase, workability and strength of specimens deteriorate. Appropriate quantity of $\beta$-Gypsum was 3~6% of binder and When it was used more than 10%, setting time was so fast. When additive quantity of waste paper has increased to 1%, flexural strength decreased to some 8~12% and density decreased abort 3% in comparison with otherwise specimen.

  • PDF

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products

  • Park, Seung-Bum;Lee, Bong-Chun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.125-132
    • /
    • 2006
  • Waste glass has been increasingly used in industrial applications. One shortcoming in the utilization of waste glass for concrete production is that it can cause the concrete to be weakened and cracked due to its expansion by alkali-silica reaction(ASR). This study analyzed the ASR expansion and strength properties of concrete in terms of waste glass color(amber and emerald-green), and industrial by-products(ground granulated blast-furnace slag, fly ash). Specifically, the role of industrial by-products content in reducing the ASR expansion caused by waste glass was analyzed in detail. In addition, the feasibility of using ground glass for its pozzolanic property was also analyzed. The research result revealed that the pessimum size for waste glass was $2.5{\sim}1.2mm$ regardless of the color of waste glass. Moreover, it was found that the smaller the waste glass is than the size of $2.5{\sim}1.2mm$, the less expansion of ASR was. Additionally, the use of waste glass in combination with industrial by-products had an effect of reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass. Finally, ground glass less than 0.075 mm was deemed to be applicable as a pozzolanic material.

Environmental Governance Practices of Local Government Units on Waste Policy Implementation

  • Santos-NOLO, Maria Cristina De los;LEE, Young-Suk
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.5
    • /
    • pp.17-25
    • /
    • 2021
  • Purpose: The purpose of the study is to determine the level of environmental governance practices of Local Government Units (LGUs) on the implementation of waste policies. It determines the level of compliance with the waste policies implemented by LGUs particularly on waste resource conservation and waste reduction; the degree of the implementation of the environmental governance on education, values, health, and economic sufficiency. Also, it determines the initiatives done by the local government units to decentralize the leadership on waste sustainability. Research Methodology: The survey method was employed to gather information from municipalities and cities on waste programs implemented by the local government units. The data were gathered from households, schools, businesses and industries; and local government units. Results and Conclusions: The findings revealed that the level of environmental governance on waste reduction and waste resource conservation was fairly implemented by the local government units. The LGUs used the four areas of governance to keep the municipality self-sufficient, well-managed, and free from waste issues. The research can be used by the academe as a good teaching material for social responsibility, public administration, strategic management, and environmental-related courses.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.

Comparison of Waste-Plastic Recycling Methods for Environmental Assessment (환경성 평가를 위한 폐플라스틱 재활용 방법들의 비교)

  • Park, Chan-Hyuk;Choi, Suk-Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 2006
  • In the present work, life cycle assessments (LCA) of various waste-plastic recycling methods (material recycling, refused derived fuel (RDF), recycling on furnace, and pyrolytic oil production) were carried out to investigate their impacts on the environment. Six types of impacts were considered. While the impact on global warming was found to be significant, the impact on others were negligible. The impact values on the global warming caused by the material recycling, RDF, and the recycling on furnace were negative, which implied that their impacts could be noticeably reduced when waste-plastic are used as an alternative to newly drawn plastics. The pyrolytic oil production, however, showed positive value, which may be due to the carbon dioxide produced during electric power generation. The pyrolytic oil production had the largest impact on the ozone layer destruction, which was due to ozone depleting substances produced from the process itself. These results can be used as a useful data for the enhancement of waste-plastic recycling.

  • PDF