• Title/Summary/Keyword: Waste heat recovery rate

Search Result 62, Processing Time 0.026 seconds

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

Performance Analysis of Fin-Tube Heat Exchangers with Various Fin Shapes for Waste Gas Heat Recovery (핀 형상에 따른 폐열회수용 핀-튜브 열교환기의 성능분석)

  • Maeng, Jae-Hun;Koo, Byeong-Soo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.627-632
    • /
    • 2011
  • As an innovative effort to secure economically viable heat recovery system, various fin shapes for industrial fin-tube heat exchangers have been studied for better performance. In this study, the waste gas heat recovery from four different fin shapes was experimentally performed for heat transfer rate and pressure drop. According to the tested results, the twist and wavy shape fins of rectangular type show the superior performance in terms of Goodness factor and jH/f factor ratio, whereas the circular spiral fin shows the inferior values. Experimental results shows good comparison with the numerical results with a slight discrepancy of 5%, which is quite resonable.

Estimation of Energy Recovery Rate of Municipal Waste Incineration Facilities through Measuring Instruments (계측기기 측정을 통한 생활폐기물 소각시설의 에너지 회수효율 산정 연구)

  • Kwon, Young-Hyun;Kang, Jun-Gu;Ko, Young-Jae;Yoo, Ha-Nyoung;Kwon, Jun-Hwa;Park, Ho-Yeun;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.770-776
    • /
    • 2018
  • This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.

Development and Reliability Optimization of Economic Analysis Module for Power Generation System from Industrial Waste Heat Recovery (산업폐열 발전시스템 경제성분석 모듈 개발 및 신뢰성 최적화)

  • Ko, Areum;Park, Sungho;Kim, Joon-Young;Cha, Jae-Min
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The issue of global warming and environmental pollutant has become an international concern due to the widespread use of fossil fuels, and thus waste heat recovery technologies has become important to improve energy utilization. The global market of power generation system using industrial waste heat is rapidly growing at an average rate of 5% due to its advantage of increasing energy efficiency. In order to design an optimal waste heat recovery system, it is necessary to develop a program that offers economic evaluation of each power generating technology according to the heat source conditions. In this paper, the economic analysis module to calculate LCOE is developed and verified the reliability against NETL economic analysis results. As a result of the verification, the error rate is about 6 ~ 7%, which satisfy the accuracy for business feasibility evaluation. In order to enhance the reliability, the module was improved by applying the levelization method used by NETL. As a result of the verification of reliability, the error rate is less than 1% and the accuracy is improved.

Exergy Analysis of Waste Energy Recovery System in Regasification Process of LNG FSRU (LNG FSRU의 재기화 공정에서 폐에너지회수시스템의 엑서지 분석)

  • Han, Seoung Hyun;Jo, Jae Ho;Kwon, Jeong-Tae;Park, Kyoungwoo;Choi, Byung Chul
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2022
  • In this study, the exergy characteristics were analyzed, according to the mass flow rate of the propane working fluid and the pressure change in the turbine inlet, for the efficient recovery of cold energy and exhaust heat by the waste energy recovery system applied to the LNG FSRU regasification process. When the turbine inlet pressure and mass flow rate of the Primary Rankine Cycle were kept constant, the exergy efficiency and the net power increased. This occurred as the turbine inlet pressure and the mass flow rate of the working fluid increased in the Secondary Rankine Cycle, respectively, and the maximum values were confirmed. In this regard, the fluctuations in the exergy rate flowing into and out of the system and the exergy rate destroyed by pumps, evaporators, turbines, and LNG heat exchangers (condensers) were examined in detail.

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.