• Title/Summary/Keyword: Waste factor

Search Result 550, Processing Time 0.044 seconds

Analysis of the Thermal and Structural Stability for the CANDU Spent Fuel Disposal Canister (CANDU 처분용기의 열적-구조적 안정성 평가)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kim, Seong-Gi;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • In deep geological disposal system, the integrity of a disposal canister having spent fuels is very important factor to assure the safety of the repository system. This disposal canister is one element of the engineered barriers to isolate and to delay the radioactivity release from human beings and the environment for a long time so that the toxicity does not affect the environment. The main requirement in designing the deep geological disposal system is to keep the buffer temperature below 100$^{\circ}C$ by the decay heat from the spent fuels in the canister in order to maintain the integrity of the buffer material. Also, the disposal canister can endure the hydraulic pressure in the depth of 500 m and the swelling pressure of the bentonite as a buffer. In this study, new concept of the disposal canister for the CANDU spent fuels which were considered to be disposed without any treatment was developed and the thermal stability and the structural integrity of the canister were analysed. The result of the thermal analysis showed that the temperature of the buffer was 88.9$^{\circ}C$ when 37 years have passed after emplacement of the canister and the spacings of the disposal tunnel and the deposition holes were 40 m and 3 m, respectively. In the case of structural analysis, the result showed that the safety factors of the normal and the extreme environment were 2.9 and 1.33, respectively. So, these results reveal that the canister meets the thermal and the structural requirements in the deep geological disposal system.

  • PDF

Distribution and Behavior of $^{137}Cs$ According to topography and nature of the soil around Yeong-Gwang NPPs, (영광원자력발전소 주변의 지형 및 지질에 따른 $^{137}Cs$ 분포 및 거동에 관한 연구)

  • Han Sang-Jun;Lee Goung-Jin;Kim Hee-Geun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.271-278
    • /
    • 2004
  • This paper shows our experiment is performed to understand the exposure tendency of $^{137}Cs$ according to the height of area and also, to supplement it by considering chemical characters of $^{137}Cs$ exposed to the soil. The samples we use for this experiment are from the general flat area of Yeonggwang county where it has NPPs, the high places of Keumjung & Bulgap mountains, and Naejan mountain where it is quite far from the NPPs. The data from this experiment show that the exposure of $^{137}Cs$ is not harmful since its range is around 252 Bq/kg-dry in most of sampled soils such as from the general flat area, the high place of Keumjung mountain where is 2 km away from the NPPs, the other high place of Bulgap mountain where is about 20 km away from the NPPs, and Naejan mountain where it is far from the NPPs. Not like the general flat area, however, the data show that the higher the area is the more $^{137}Cs$ is exposed. That is, at the top of mountains, the more $^{137}Cs$ is exposed compared to at the bottom area. It is almost $2{\~}6$ times more than the general flat area of Yeonggwang county where it has NPPs. The data also show that the spread of $^{137}Cs$ is deeply related to the geographical(the height of area, rainfall, etc..) factors and chemical factors of soils. As the geographical factors, there are far more chances to be exposed of $^{137}Cs$ at the high area of mountains through the air compared to at lower area and therefore, we can get more high-leveled readings of $^{137}Cs$ at the high area while it is low-leveled ones at the general flat area even if both of them have the same soil conditions. Regarding the chemical factors of soil, it is clarified that the CEC is the key factor. The CEC means the capability of sticking $^{137}Cs$ accumulated into the soil. Hence, the more CEC it has the more high-leveled readings of $^{137}Cs$ we get under the same geographical condition.

  • PDF

The Characteristics of an Oxidative Dissolution of Simulated Fission Product Oxides in $(NH_4)_2CO_3$ Solution Containing $H_2O_2$ ($H_2O_2$ 함유 $(NH_4)_2CO_3$ 용액에서 모의 FP-산화물의 산화용해 특성)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This study has been carried out to look into the characteristics of an oxidative-dissolution of fission products (FP) co-dissolved with uranium (U) in a $(NH_4)_2CO_3$ carbonate solution. Simulated FP-oxides which contained 12 components have been added to the solution to examine their dissolution characteristics. It is found that $H_2O_2$ is an effective oxidant to minimize the oxidative-dissolution of FP. In the 0.5 M $(NH_4)_2CO_3$-0.5 M $H_2O_2$ solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U, while 98${\pm}$2% for Re and Te, 94${\pm}$2% for Cs, and 29${\pm}$2 % for Mo are dissolved for 2 hours. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10${\sim}$20 minutes) due to their high solubility in the $(NH_4)_2CO_3$ solution regardless of the addition of $H_2O_2$, and independent of the concentrations of $Na_2CO_3$ and $H_2O_2$. However, the dissolution ratio of Mo seems to be slightly increased with time and about 33 % for 4 hours, indicating a very slow dissolution rate and also independent of the $(NH_4)_2CO_3$ concentration. It is found that the most important factor for the oxidative-dissolution of FP is the pH of the solution and an effective dissolution is achieved at a pH between 9${\sim}$10 in order to minimize the dissolution of FP.

  • PDF

Selection of Retaining Wall System for Underground Parking Lots Expansion of Apartments (거주중 공동주택의 지하주차장확대를 위한 흙막이공법 선정)

  • Ro, Young-Chang;Lee, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • Rapidly increasing automobile supply rate according to improved economic level of life makes lack of parking space of apartments. Even though the initial design of parking space compiled with old regulations, it may not observe either new laws or requirement of inhabitants. Even if old apartments have no structural durability problem, outworn facilities and insufficient parking area may be a main reason for reconstruction. It causes waste of national resources and makes recycling issues. Additionally, irregularly parked cars make traffic obstruction to a fire engine and result in many fire accident victims. Parking problems of apartments are not only inconvenience but also serious safety issues. From these points of view, remodeling only for parking area expansion is necessary to avoid overall reconstruction of apartments. The purpose of this study is to suggest a retaining wall selection method for apartments underground parking lots expansion without evacuation of resident people. Effect factors to select retaining wall system are analyzed and weight values are calculated by applying AHP. One selection method of retaining wall is proposed by evaluating applicability and its sensitivity analysis is executed. This selection method is expected to help decision-making of retaining wall system selection.

Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil (온도가 유기물의 질소무기화와 미생물 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Kim, Seong-Cheol;Moon, Doo-Gyung;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community in non-volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles showed that was different significantly according to incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. Principal component analysis using PLFA profiles showed that microbial community structures were composed differently by temperature factor at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$). In conclusion, Soil microbial community structure showed relative sensitivity and seasonal changes as affected by temperature and organic matter type.

An Optimization Algorithm of Gypsum Board Loss for Wall Finishing in Modular Construction System (모듈러건축 벽체마감 석고보드 손실 최적화 알고리즘 개발)

  • Lee, Dong-Min;Chin, Sangyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • The ministry of Land, Infrastructure and Transport announced that they launched the pilot project to offer Happy House built with modular construction as part of the major projects of incumbent government in 2013. The market size of modular construction is getting increasingly enlarged together with strong will of government. The major challenges that current modular construction encounters can be summed up as lack of standardization of material on the stage of design and fabrication. The portion of material costs in modular construction marks 16 to 17% higher than the existing other construction method, and account for 60 % of total construction cost, which is why material management is the most important factor. However, the imperfect standardization and specification on design causes high loss of materials on fabrication, which makes the construction wastes and total construction cost increasing in accordance with the increase of material costs. This study has been conducted to verify major modules by developing optimization algorithm on gypsum board material among wall finishing materials. It is expected that this paper contributes not only to eco-friendly construction by minimizing the waste factors of materials through these efforts, but also to removing high cost issues which had been recognized as a setback of current modular construction.

Properties of Eco-Construction Material Using Recycled Sewage Sludge Ash (하수슬러지 소각재를 재활용한 친환경 건설 소재의 재료적 특성)

  • Jo, Byung-Wan;Lee, Jea-Ik;Park, Seung-Kook;Lee, Jae-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.667-676
    • /
    • 2007
  • As the 21st century began, cement and concrete that are representatives of modem building materials became a major factor in global warming, air pollution and environmental pollution. Also, the problems that are generated while pursuing high performance and high strength became social issues. Therefore, it has become urgent to prepare counter plans. This study has aimed at the recycling of sewage sludge ash and developing it as a new concept in building material which serves the environmental considerations for long-lasting developmental purpose. Also, the study aimed to find a substitute for scarce natural resources and to secure high techniques for waste recycling. The purpose of this study was also to solve fundamentally secondary environmental pollution. The results revealed that the chemical components of sewage sludge ash are mainly $SiO_2\;and\;Al_2O_3$ which are similar to the components of pozzolan. Also, it was identified that sewage sludge ash can be utilized as a hardened specimen with an alkali activated pozzolan reaction. Considering the possibility of appropriate strength development and the advantage of drying shrinkage, compared with that of cement, it was believed that sewage sludge ash can demonstrate a function as a substitute for cement given.

An Efficient IPTV Distribution Network by Packet Transport System (Packet Transport System에 의한 효율적인 IPTV 분배망 구축 방안)

  • Jang, Jin-Hee;Park, Seung-Kwon;Roh, Jin-Young;Noh, Francis Tai
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.80-92
    • /
    • 2007
  • IPTV Services that is representative union service of broadcasting and telecommunication need guarantee of QoS, efficiency of multicasting, and hish bandwidth on the network. Because typical TDM based metro transport network was designed by transporting fixed voice traffic with stable and recovering method, it has a defect of bottleneck and a waste of bandwidth for acceptance of data traffic with burst feature and then all of data are treated equally at the transport network because it cannot classify between advanced high end service and best effort low end service. for completely resolving this kind of problem about increasing burst traffic and QoS issues, firstly we need to new design for transport network. This paper presents transformation method from TDM based metro transport network to packet based transport network and advantage and effectiveness of packet based transport network and also indicates technical factor and characters about method of packet transport system. As a result of research, the Packet Transport System, which is a transmission network for packet delivery, take in not only a specific character of legacy TDM but QoS, Multicast and high bandwidth, then, it is able to keep an effective bandwidth and a stabilized performance of packet transmissions. Additionally, if a fault be occurred on an optical link, the system is able to guarantee a differential QoS by an each service class using an algorithm to make certain of a traffic existence and contain a protective mechanism.

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil (온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Koh, Sang-Wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.467-474
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.

Characteristics of Wastewater Treatment in Applying RBC Modified Dephanox Process (회전원판법을 적용한 Modified Dephanox 공정의 하수처리특성)

  • Kang, Min-Koo;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.477-486
    • /
    • 2010
  • This study was performed with the object in which it improves the nitrification by using RBC, that is one of the biological waste water treatment process. By applying the Modified Dephanox process to RBC in this research in order to evaluate the improvement of the nitrification by RBC a research was conducted. There is the most conspicuous feature of the process of using RBC. it is that the nitrification can be smoothly performed even if the suspended solid of the high concentration as the interference factor in the nitrification tank is flowed in. Moreover, as a result of experiment, TCOD removal efficiency of the process showed up more than about 90%. when influent TCOD loading rate was 0.04~0.1 kg / $day{\cdot}m^3$. and T-N removal efficiency is high at about 75% in spite of the process operating of the laboratory scale was observed. Also, As increasing influent ${PO_4}^{3-}$-P, T-P loading rate, ${PO_4}^{3-}$-P, T-P removal efficiency was increased. Finally, it was elucidated that the utilization of RBC in external nitrification system resulted in not only high nitrification performance but also stable system operation by minimizing inhibitory effect of overflowed suspended solid (SS).