• Title/Summary/Keyword: Waste bed

Search Result 257, Processing Time 0.022 seconds

APPLICATION OF A PILOT-SCALE FLUIDIZED-BED REACTOR FOR THE DECONTAMINATION OF GROUNDWATER

  • Ohlen, Ken;Lee, Seong-Taek;Hegemann, Wemer;Jang, Yong-Geun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.77-80
    • /
    • 2001
  • Groundwater, contaminated predominantly with aromatic compounds and chlorinated ethylene, could be biologically treated in a fluidized-bed reactor with immobilized cells. The decomposition efficiency for the aromatics was over 90% at the retention time of 2.5 h. The chlorinated ethylenes, especially trichloroethylene (TCE) and cis-dichloroethylene (DCE), could be decomposed only insufficiently. No anaerobic methane formation was observed for this groundwater even at a very low dissolved oxygen (DO) concentration of 0.75 mg/L. The variation of DO concentration resulted in an optimal value of 1.5 mg/L. The recycle of air waste could increase the utilization of oxygen. The amount of low boiling pollutants stripped out remained constant with the recycle, while for the higher boiling pollutants the stripping slightly increased. Using air instead of oxygen increases the flow rate of air waste, which is connected to a higher stripping of pollutants. In this investigation, the pollutant concentration in the air waste remained constant. The stripping of main pollutants did not exceed 0.3 %.

  • PDF

Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root (우슬(Achyranthes Root) 탕제 후 얻어진 폐한약재 부산물의 열분해)

  • Park, Ji Hui;Jeong, JaeHun;Lee, Ji Young;Kim, Young-Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • Thermal decomposition of waste Achyranthes Root (WAR) emitted from its decoction process was investigated using a TG analyzer and a fixed-bed reactor. The WAR had the larger C and fixed carbon content than fresh AR (FAR) due to the extraction of hemicelluloses from FAR during decoction process. Thermogravimetric (TG) analysis results also revealed the elimination of hemicellulose by its decoction. Relatively high contents of the cellulose and lignin made high contents of their typical pyrolyzates, such as acids, ketones, furans, and phenols, in the pyrolysis of WAR using the fixed-bed reactor. The increase of pyrolysis temperature from 400 to $500^{\circ}C$ increased yields of oil and gas due to the more effective cracking efficiency of WAR at a higher temperature. The chemical composition of product oil was also changed by applying the higher pyrolysis temperature, which increased the selectivity to furans and phenols.

Preparation of Thin TiO$_2$ Photocatalytic Filter for Waste Gas Treatment (폐가스 처리를 위한 박막형 TiO$_2$ 광촉매 필터 제조)

  • 조영민;윤정호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.311-312
    • /
    • 2002
  • 환경분야에서 광촉매는 주로 오염물질의 광분해처리에 이용되고 있는데, 기존에 사용되고 있는 광분해 방법은 광촉매 미립자를 수용액에 슬러리 형태로 분산시키거나 fixed bed, fluidized bed에 부착시킨 형태의 반응기들이다. 실험적 수준의 연구로부터 얻어진 여러 연구 결과에 의하면 슬러리 형태의 반응기가 고정화 촉매 반응기보다 효율이 더 높은 것으로 보고되고 있다. 그러나 엔지니어링 관점에서 슬러리형 반응기는 촉매의 재활용과 정화 처리 후 촉매입자를 유체로부터 분리해야하는 결점이 있다. (중략)

  • PDF

The Study of Energy Conversion in a 2 Ton/day Waste-wood Fixed Bed Gasifier (2톤/일 고정층 가스화기를 이용한 폐목재의 에너지 전환 연구)

  • Lee, See Hoon;Son, Young Il;Ko, Chang Bok;Choi, Kyung Bin;Kim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2009
  • For the conversion of domestic waste-wood into energy, a fixed bed gasifier ($0.9 m{\times}2.4 m$) having the capacity of 2 ton/day was designed and constructed. The dual knife valve was used to feed waste-wood of which size was 3~5 cm and a rotary stoker system was installed in the bottom of gasifier. The pilot gasification system consisted of feeding system, fixed bed gasifier, gravity fine particle collector, heat exchanger for syngas cooling, ID fan, and cooling tower. The operation temperatures of gasifier were $700{\sim}1000^{\circ}C$ and the concentrations of syngas were CO: 25~40 vol%, $H_2$: 7~12 vol%, $CH_4$: 2~4 vol%, $CO_2$: 12~24 vol%. The calorific value of syngas was $1100{\sim}1500kcal/Nm^3$ and was enough to be applied in the industrial combustor. Also the gas engine was operated by using syngas from biomass gasifier and produced 1~4 kW of power.

Design and Simulation of Fluidized Bed System for Waste Propellant Treatment by Computational Fluid Dynamics (폐 추진제 소각을 위한 유동층 반응기 설계 및 CFD 공정 모사)

  • Lee, Jiheon;Lee, Inkyu;Kim, Hyunsoo;Park, Jungsoo;Oh, Min;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.84-89
    • /
    • 2018
  • Recently, many studies have focused on the explosive waste treatment in terms of the safety and environmental pollution. A combustion process using fluidized bed incinerator has several profits : continuous process, low pollutive gases such as NOx, and high process efficiency. This study focused on the design of the propellant combustion reactor by using computational fluid dynamics(CFD) simulation technique. As a result, the reactions are successfully simulated in cylindrical incinerator, and. The study will influence to the research about treatment of explosive wastes.

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

Numerical Study on the Process Analysis of Biomass Fast Pyrolysis in a Circulating Fluidized Bed (순환유동층 반응기내 바이오매스의 급속열분해 공정해석에 관한 수치해석적 연구)

  • Lee, Yu Ri;Park, Hoon Chae;Choi, Myung Kyu;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.518-527
    • /
    • 2017
  • The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.

A Study on Removal of Harmful, Heavy Metals in Fly Ash from Municipal Incinerator

  • Nakahiro, Yoshitaka
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.489-493
    • /
    • 2001
  • Big cities in Japan have serious problems due to the shortage of new reclaimed land for municipal wastes. If harmful heavy metals such as cadmium, lead, copper and etc. are contained in the municipal waste combustion residues, they are not able to fill up according to the environmental law in Japan. In this study, the removal of heavy metals in the fly ash (EP ash) was dealt with chloridizing vaporization method. EP ash as a non-hazardous materials is utilized as covering materials, road bed, and building materials.

  • PDF