• Title/Summary/Keyword: Waste Tire

Search Result 159, Processing Time 0.031 seconds

A Study on the Optimization of the Mix Proportions of High Strength Concrete Fire-Resistant Reinforcement Using Orthogonal Array Table (직교배열표를 이용한 고강도콘크리트 내화성능 보강재의 배합 최적화 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • The peculiarity pointed out for high strength concrete is the occurrence of spalling during a fire. Recently, there are many efforts such as development of all types of spalling reducing materials and other innovative materials in various fields. Need is now to examine the adequate mixing proportions of these materials. This study intended to derive experimentally and statistically mix proportions that can represent the basic quality requirements as well as the optimal effects on the fire-resistance for 4 types of functional materials that are metakaolin, waste tire chip, polypropylene fiber and steel fiber. Here, the tests were planned through an optimal test method using an orthogonal array table with 4 parameters and 3 levels. The statistical analysis adopted the response surface analysis method. Results verified mutual complementary contribution between the materials when using a combination of the functional materials selected as parameters for the strengthening of the fire-resistance of 80 MPa-class high strength concrete. Besides, the optimal conditions of the fire-resistance strengthening materials derived through response surface analysis were a volumetric replacement of silica fume by 80% of metakaolin, a volumetric replacement of fine aggregates by 3% of tire waste chip, and an addition of 0.2% of the whole volume by polypropylene fiber without mixing of steel fiber. In such cases, the basic characteristics as well as the fire-resistant characteristics of high strength concrete were also satisfied.

Fundamental Properties of Asphalt Concrete Mixture as Using TDF Fly Ash as Mineral Filler (아스팔트 콘크리트 채움재로 TDF Fly Ash 적용에 따른 아스팔트 혼합물 기초 물성 평가)

  • Choi, Min-Ju;Kim, Hyeokjung;Kim, Yongjoo;Lee, Jaejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • TDF (Tire derived fuel) Fly ash is an industrial by-product when scraped tire was used a fuel source at the power plant. TDF Fly ash has been classified as domestic waste at the workplace so far and has not been appropriately utilized. We conducted a fundamental physical property test of asphalt mixture to investigate the possibility of using TDF Fly ash as a mineral filler of asphalt mixture for exploring new usage strategies. TDF Fly ash meets KS F 3501 asphalt mixture mineral filler criteria. And the optimal asphalt binder amount was determined to be 4.5% by Marshall design. Mineral filler content was determined at 3% and analyzed by comparing using mineral filler as stone powder. The basic physical property test of the asphalt mixture was evaluated to the provision indicated in "Production and Construction Guidelines for Asphalt Mixture" published by the Ministry of Land, Infrastructure and Transport. In the test, Marshall stability test, dynamic immersion test, tensile strength ratio test, wheel tracking test were carried out. As a result of the experiment, Marshall stability and dynamic stability satisfied the standards, and confirmed the stability and Dynamic immersion and tensile strength ratio test that TDF Fly ash is more effective for scaling and moisture resistance than stone dust. Therefore, in this research, it is expected that multilateral utilization of TDF Fly ash, and a positive effect can be also expected.

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

Experimental Study on the Mechanical Properties of Glass Concrete with Powdered Waste Glasses (폐유리 분말을 혼입한 유리 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 배수호;정영수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • As a part of the movement of natural resources conservation, there have been doing many recycling research works for obsolete aged tire, wasted plastic materials, etc. The purpose of this experimental study is to develop glass concrete by recycling wasted glasses as a cementitious constituent in concrete. First of all, the optimum replacement ratio of powdered waste glasses(PWG) can be determined through pilot compressive strength test on normal and high strength concrete cylinders, which have been made in various mix proportions by changing the replacement ratio of PWG. Then, further tests have been done to figure out mechanical properties of most desirable glass concrete with optimum replacement ratio of PWG, such as static modulus of elasticity, compressive and tensile strengths, flexural strength. On the other hand, the alkali-silica reactions by the mortar-bar method(KS F 2546) have been experimentally doing in various grain sizes of PWG, since the alkali in the cement has a tendency to react with the silica in the PWG. In can be confirmed from the test that glass concrete can have better workability than concrete with silica fume, and they are alike in compressive strength. It is concluded that wasted glasses can be used as pratical additives for economic and environmentally friendly concrete.

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.

Current Effective Recycling and Application Methods in Construction Waterproofing Industries (건설방수산업분야에서의 유효자원 재활용 및 응용 기술 현황)

  • Park, Jin-Sang;Kim, Sun-Do;Park, Wan-Goo;Kim, Dong-Bum;Lee, Jong-Yong;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • This paper intends to analyze the roles of regulations and certifications within the construction market that affect the effective recycling and application methods of construction waterproofing industries. Certifications, eco-labels, green certification patents, and new excellent technologies obtained in construction waterproofing industries are studied. In accordance to the study results, it was determined that, a total of 38 items obtained eco-labels with effective recycling as the theme, 10 items with green certifications, and 8 items with New Excellent Technologies. Regarding the types of effective recycled resources, most of them were concerned with composite-polymer(EVA, PVC, etc.) materials, waste tire powder, waste rubber, etc., which indicated that there is a clear limitation in the variety of the materials that are eligible for effective recycling in the construction waterproofing industries.

Experimental Study on the Capacity of Holed RC Beam Mixed with Waste Tire Particles (폐타이어 유공 철근콘크리트보의 내력에 관한 실험적연구)

  • Son, Ki-Sang;Lee, Won-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.54-62
    • /
    • 2005
  • This Study is to find out how RC beam mixed with sawdust acts comparing with normal beam without sawdust mixture, and how they can be applied to the actual structural frame, despite a Int that they are mixed with waste material : saying sawdust. ED3H1, ED3H2, ED5H1, ED5H2, ED3H1UB, ED5H1UB, ED3H2L, ED5H2L and Normal without sawdust mixture are main factor to be tested here in order to apply them to the actual case. D and H means diameter 3cm or 5cm, and holes one and two respectively. And all variables are tested with each two for one variables. Test results are compared using crack diagrams and strain & loads. There are eleven(11)% capacity decrease between ED 3H1 and ED5H1 in rebar, strain. Left and right side crack shapes are much similar in variable ED3H2L having maximum capacity 14.5 tone. ED5H2L having maximum capacity thirteen(13)tone, in case of normal 19.6 tone. Two holes in beam rather on the longitudinal direction than on the forcing direction can be more effective to keep the original capacity of the beam because this case can distribute load more uniformly. There is 33% capacity decreased in case of diameter five(5)cm, compared to diameter three(3)cm. Two holes give thirty nine(39) percent capacity decrease than one of diameter three(3)cm.

Comparison study between recovered carbon black and commercial carbon black filled epoxy conductive materials

  • Huai M. Ooi;Pei L. Teh;Cheow K. Yeoh;Wee C. Wong;Chong H. Yew;Xue Y. Lim;Kai K. Yeoh;Nor A. Abdul Rahim;Chun H. Voon
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.221-232
    • /
    • 2024
  • Waste tire management and recycling have grown to be significant issues because they bring up a global environmental concern. Thus, turning recycled waste tires into useful products may help tackle the environmental issue. This research aims to study and compare the effect of recycled carbon black (rCB) and commercial carbon black (CB) at certain 15 vol. % of filler loading on the mechanical, thermal, morphology and electrical properties of epoxy/CB composites. For this project, epoxy resin, diethyltoluenediamine (DETDA), recovered carbon black (rCB) and commercial carbon black (CB) graded N330, N550, N660 and N774 were mixed and compared accordingly to the formulation determined. The CB content was dispersed in the epoxy matrix using the mechanical mixing technique. The distribution and dispersion of CB in the epoxy matrix affect the characteristics of the conductive composites. rCB content at 15 vol% was selected at fixed content for comparison purposes due to the optimum value in electrical conductivity results. The flexural strength results followed the sequence of rCB>N774>N660>N550>N330. As for electrical conductivity results, epoxy/N330 exhibited the highest conductivity value, while the others achieved a magnitude of X10-3 due to the highest external surface area of N330. In terms of thermal stability, epoxy/N330 and epoxy/N774 were slightly more stable than epoxy/rCB.

Characteristics and Synergistic Effects of Coal/Waste Tire/Polypropylene Coliquefaction (석탄, 폐타이어, 폴리프로필렌의 공동액화 특성 및 상승효과)

  • Jeong, Tae-Jin;Jeong, Dae-Heui;Kim, Sung-Chul;Lim, Myung-Hoon;Na, Byung-Ki;Song, Hyung-Keun;Yoon, Do-Young;Kim, Dae-Heum;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.228-236
    • /
    • 2000
  • 본 연구에서는 순간 고온식 tubing-bomb reactor를 사용하여 41$0^{\circ}C$에서 Alaska산 아역청탄, 폐타이어, 폴리프로필렌 혼합물의 공동액화 시 액화특성 및 상승효과를 연구하였다. 석탄, 폐타이어와, 폴리프로필렌의 조성을 변화시키고 수소공여용매인 tetralin의 양을 변화시켜가며 공동액화를 진행했을 경우 공동액화율을 살펴보면, 무촉매 반응의 경우 폴리프로필렌의 양이 많아지면 tetralin이 첨가되지 않았을 경우 액화율이 증가하였으나 tetralin이 첨가되었을 경우 공동액화율이 감소하였다. 촉매 반응의 경우에는 모든 반응조건에서 상승효과가 나타났으며 폴리프로필렌의 양이 증가할수록 공동액화율이 증가하여 석탄 : 폐타이어 : 폴리프로필렌의 조성이 1:1:3에서 tetralin 4$m\ell$, Co-naphthenate 촉매 사용하였을 때가 최적의 반응조건으로 83%의 공동액화율을 나타내었다.

  • PDF

Recent Status and Progress of Radiation Processing in the World (방사선처리기술 최근 동향)

  • Lee, Yun Jong;Lee, Byoung Hun;Im, Don-Sun;Kim, Jae-Ho;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications.