• Title/Summary/Keyword: Waste Removal

Search Result 1,010, Processing Time 0.037 seconds

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF

Removal of Arsenic in Synthesis Method and Characteristics of Fe(III)-ettringite (비소제거를 위한 Fe(III)-ettringite 합성방법 및 특성 연구)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings, because of it's carcinogenic property, the countries like United states of America and Europe have made stringent regulations which govern the concentration of arsenic in drinking water. The current study focuses on different treatment methods for removal of arsenic from waste water. Treatment method the high strength arsenic waste water is treated with Fe(III)-ettringite by co-precipitation method. Number of experiments were carried out to decide the optimal dosage of Fe(III)-ettringite to treat arsenic waste water. The Fe(III)-ettringite was synthesized by taking appropriate equivalent ratios of calcium oxide and ferric chloride in proportion to the arsenic. The best removal efficiencies of 94% were observed at a As/(Ca: Fe) ratio of 1:3. The maximum removal of arsenic was observed in pH range of 12. But as the pH increases the arsenic removal efficiency decreases as portlandite is formed in the pH above 12. The analysis of surface of precipitate conform the needle like structure of ettringite. This treatment technique has promising features such as, the chemicals required in the treatment as well as the sludge generated can be reduced. The operating pH range is in alkaline region which is advantageous over traditional treatment process which has lower pH. Also the co-precipitation not only helps in removal of arsenic but also heavy metals.

Production of Photosynthetic Bacterial Cells of Rhodospirillum rubrum P17 from Soybean Curd Waste Water (두부공업폐수를 이용한 광합성세균 Rhodospirillum rubrum P17의 균체생산)

  • 강성옥;조경덕;임완진;조흥연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.622-627
    • /
    • 1993
  • Rhodospirillum rubrum P17 was used to investigate the pontential for the treatment of soybean curd waste and for the utilization of the biomass produced. The maximal biomass production and COD removal from the waste water were obtained at 30C, pH 7.0 under 2,500lux production and 50 rpm of agitation. The initial COD level of the soybean curd waste water was 3,240mg/l, and after 4 days of cultivation in batch culture, 3.46g/l of cells was obtained and COD level of the waste water reduced to 150mg/l (COD removal rate 95.4%).

  • PDF

Studies on the Biological Treatment of Dye Waste Water and Degration of Polyvinyl Alcohol (염색공장 폐수중 PVA 분해세균의 분리 및 생물학적 처리효과)

  • 강선태;서승교;권오억
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 1990
  • As a research for treatment of waste water by biological method, we investigated general characteristics of waste water and isolated some useful bacteria which effectively treated waste water. Compositions of waste water were analyzed to give COD 2060 ppm, PVA 560 ppm, T-N 50 ppm, T-P 3.3 ppm and PH 12. Also, we inverstigated optimum nutrients requirement and growth conditions by mixed culture as well as the effect of coagulants. The COD removal rate reached maximum state for 48 hrs culture at pH 7.0 and 30$^{\circ}$C. Alum as the coagulated was the most effective. The COD removal rate was also increased by supplementing 10 ppm phosphorous sources as additional nutrients. The COD of waste water was reduced to 10% of its initial value by the continuous culture. As a result of overall experiments the COD of effluents became about 100 ppm and final pH 7.

  • PDF

Advanced Biological Treatment of Industrial Wastewater using Food Waste Leachate as an External Carbon Source: Full-Scale Experiment (음식물쓰레기 탈리액을 이용한 산업폐수의 생물학적 고도처리 실증실험)

  • Lee, Byeongcheol;Ahn, Johwan;Lee, Junghun;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.461-466
    • /
    • 2011
  • The feasibility of utilizing food waste leachate as an external carbon source was tested to enhance biological nutrient removal from an industrial wastewater with an average flow rate of $164,800m^3/d$ and a low carbon/nitrogen ratio of 2.8. A considerable improvement in the removal of nitrogen and phosphorus was observed when a certain amount of the leachate, ranging from 70 to $142m^3/d$, was supplemented to the biological industrial wastewater treatment process. The addition of the leachate led to an increase in the BOD/N ratio (4.5) and the removal efficiency of nutritents from 29.7% to 71.7% for nitrogen and from 34.8% to 65.6% for phosphorus. However, an excessive dose of the leachate that significantly exceeded $120m^3/d$ caused serious operational problems, like oil-layer formation in the grit chamber and scum layer in the primary clarifier. Thus, an supplement of food waste leachate at a dose acceptable to an existing facilities can be a practical and effective means to enhance the nutrient removal from industrial wastewater and to dispose of the food waste leachate.

Effects of the Characteristics of Influent Wastewater on Removal Efficiencies for Organic Matters in Wastewater Treatment Plants (하·폐수 처리시설 내 유입수 특성이 유기물 처리효율에 미치는 영향)

  • Lee, Tae-Hwan;Park, Min-Hye;Lee, Bomi;Hur, Jin;Yang, Heejeoug
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.674-681
    • /
    • 2009
  • Characteristics of organic matters (OM) in wastewater and the removal efficiencies were investigated using the influent and the effluent samples collected from 21 wastewater treatment plants. The OM characteristics investigated included biodegradability, humic content, specific UV absorbance (SUVA), the distribution percentage of refractory OM (R-OM), and synchronous fluorescence spectra. The types of wastewater (sewage, livestock waste/night soils, industrial waste) were easily distinguished by comparing the synchronous fluorescence spectra of the influent wastewater. The prominent peak of protein-like fluorescence (PLF) was observed for livestock waste/night soils whereas sewage exhibited a unique fluorescence peak at a wavelength of 370 nm. Irrespective of the wastewater types, the distribution percentage of R-OM increased from the influent to the effluent. Livestock waste/night soils showed the highest removal efficiency among all the three types of wastewater. There was no statistical difference of the removal efficiency between a traditional activated sludge and biological advanced treatment processes. Removal efficiency based on dissolved organic carbon DOC presented good correlations with the distribution percentage of R-OM and fulvic-like fluorescence (FLF) of the influent. The prediction for DOC removal efficiency was improved by using multiple regression analyses based on some selected OM characteristics and mixed liquid suspended solid (MLSS).

Pretreatment Process for Performance Improvement of SIES at Kori Unit 2 in Korea

  • Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon;Song, Myung-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.12-27
    • /
    • 2004
  • Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP #2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-l10m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank (WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and $1.534{\times}10_{-3}{\mu}Ci/cc$, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively.

  • PDF