• Title/Summary/Keyword: Waste Removal

Search Result 1,015, Processing Time 0.02 seconds

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Application of Reused Powdered Waste Containing Aluminum Oxide on the Treatment of Cr(VI) (6가 크롬 처리를 위한 알루미늄 산화물을 함유한 재생 분말 폐기물의 적용)

  • Lim, Jae-Woo;Kim, Tae-Hwan;Kang, Hyung-Sik;Kim, Do-Son;Kim, Han-Seon;Cho, Seok-Hee;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In this research, the removal capacity of Cr(VI) by the reused powdered wastes (RPW) containing aluminium oxides was studied. As a pre-treatment process for the preparation of calcined wastes, calcination was conducted at $550^{\circ}C$ to remove organic fraction in the raw wastes. In order to study the adsorption trend of Cr(VI) ions from aqueous solutions, the pH-edge adsorption, adsorption kinetic and adsorption isotherm were investigated using a batch reactor in the presence of four different background electrolytes($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$). Cr(VI) adsorption was greatly reduced in the presence of $SO_4\;^{2-}$ and $PO_4\;^{3-}$ over the entire pH range. Meanwhile the inhibition effect by $NO_3\;^-$ and $CO_3\;^{2-}$ was relatively lower than that by $SO_4\;^{2-}$ and $PO_4\;^{3-}$. Cr(VI) adsorption was maximum around pH 4.5 in the presence of $NO_3\;^-$ and $CO_3\;^{2-}$. As the concentration of background electrolytes increased, Cr(VI) adsorption decreased. This result mightly suggests that adsorption between the surface of RPW and Cr(VI) occurs through outer-sphere complex. Cr(VI) adsorption onto the RPW was well described by second-order kinetics. From the Langmuir isotherm at initial pH 3, the maximum adsorbed amount of Cr(VI) onto the RPW was 11.1, 10, 3.3, 5 mg/g in the presence of $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-}$, and $PO_4\;^{3-}$, respectively.

A Feasibility Study on the Deep Soil Mixing Barrier to Control Contaminated Groundwater (오염지하수의 확산방지를 위한 대체 혼합차수재의 적용에 관한 연구)

  • 김윤희;임동희;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.53-59
    • /
    • 2001
  • There is a lot of method to manage the insanitary landfill but vertical cutoff walls have been widespreadly used and were installed into the subsurface to act as a barrier to horizontal groundwater flow, The stabilized material such as specialized cement or mixed soil with additives has been generally applied for the materials of the deep soil mixing barrier in korea. The amount of the stabilized material is dependent on the field conditions, because the mixing ratio of the material and the field soil should achieve a requirement in the coefficient of permeability, lower than 1.0$\times$$10^{7}$cm/sec. This study determined the quantity and optimized function ratio of the stabilized material in the formation process of the mixed barrier that was added with stabilized material on the field soil classified into SW-SC under USCS (Unified Soil Classification System). After that the fly ash and lime were selected as an additives an that could improve the function of the stabilized material and then the method to improve the functional progress in the usage of putting into the stabilized material as an appropriate ratio was studied and reviewed. The author used the flexible-wall permeameter for measuring the permeability and unconfined compressive strength tester for compressive strength, and in the view of environmental engineering the absorption test of heavy metals and leaching test regulated by Korean Waste Management Act were performed. As the results, the suitable mixing ratio of the stabilized material in the deep soil mixing barrier was determined as 13 percent. To make workability easy, the ratio of stabilized material and water was proven to be 1 : 1.5. With the results, the range of the portion of the additives(fly ash : lime= 70 : 30) was proven to be 20-40% for improving the function of the stabilized material, lowering of permeability. In heavy metal absorption assessment of the mixing barrier system with the additives, the result of heavy metal absorption was proved to be almost same with the case of the original stabilized material; high removal efficiency of heavy metals. In addition, the leaching concentration of heavy metals from the leaching test for the environmental hazard assessment showed lower than the regulated criteria.

  • PDF

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.