• Title/Summary/Keyword: Waste Plastics

Search Result 236, Processing Time 0.021 seconds

Plastic recycling in South Korea: problems, challenges, and policy recommendations in the endemic era

  • Uhram Song;Hun Park
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.74-84
    • /
    • 2024
  • Background: Despite many environmental problems, plastic waste emissions have been a significant surge during last few decades in the Republic of Korea. Furthermore, the emergence of the coronavirus disease 2019 (COVID-19) pandemic has lead to an increased use and disposal of plastic waste worldwide. This paper tried to present summarized data related to the production and disposal of plastics especially before and after the COVID-19 pandemic with environmental impacts of plastics. Also, review of plastic waste reduction policies and feasible policies to promote an act for a safe, sustainable environment are presented. Results: Plastics cause many environmental problems due to their non-degrading properties and have a huge direct and indirect impact on Ecosystems and Public Health. Microplastics need a lot of attention because their environmental effects are not yet fully identified. Despite plastic's significant impact on climate change, the impact is not yet widely known to the public. Since the COVID-19 pandemic, the use of plastic has surged and recycling has decreased due to the increase in delivery food and online shopping. Korea is introducing very active plastic and waste management policies, but it is necessary to implement more active policies by referring to the cases of other countries. Conclusions: In this article, we have scrutinized the evolution of plastic waste generation in the aftermath of the COVID-19 pandemic and delved into policy frameworks adopted by other nations, which South Korea can draw valuable lessons from. The formidable challenges posed by plastic waste, the remarkable shifts witnessed during the COVID-19 era, and the multifaceted response strategies elucidated in this paper all play a pivotal role in steering South Korea toward a sustainable future.

The Thermal and Mechanical Properties of Recycled PP/EVOH/PP Scrap with Compatibilizers (재활용 PP/EVOH/PP 스크랩의 상용화제별 열적/기계적 특성연구)

  • Chun, Yong-Jin;Ahn, Tae-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.176-181
    • /
    • 2008
  • This paper was studied the possibility on the recycling of the scrap used as the food packaging materials, PP/EVOH/PP multilayer. Recycling study was investigated into thermal and mechanical properties of samples which were mixed PP/EVOH waste plastics scrap with two kinds of compatibilizers. Melt behaviors as thermal property and tensile strength, % strain at break point, and tensile modulus as mechanical properties were investigated into kinds of and the weight ratio of compatibilizers. Mixed PP/EVOH waste plastics shows compatibity when Minanto-s and GMS as compatibilizers are mixed 0.5wt.% over.

The Development of Electrostatic Separation Technique for Recycling of Life Circles Waste Plastic (생활계 폐플라스틱 재활용을 위한 정전선별 기술개발)

  • Jeon Ho-Seok;Park Chul-Hyun;Kim Byoung-Gon;Park Jai-Koo
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.28-36
    • /
    • 2006
  • The development of material separation technique for waste plastic recycling are the necessary situation restricted by law the reclamation and incineration of waste plastic after 2004, with enforcement of EPR (Extended Producer Responsibility) system. As the this study is the research on the development of electrostatic separation techniques for recycling of life circles waste plastic by development of charging material and charger, the separation efficiency can be improved. Therefore, we developed the charger and electrostatic separator to increase charging efficiency and material separation per object plastics, rising these equipments, we removed PVC up to $99\%$ from two kinds of mixed plastics. And in case of restricting PVC content such as PET, we developed the separation technique that can remove PVC up to $99.99\%$ from PET with PET recovery about $80\%$. Also, as we separated over $98\%$ for three kinds of mixed plastics, and then established material separation technique to increase recycling of plastic.

The Development of Electrostatic Separation Technique for Recycling of Life Circles Waste Plastic (생활계 폐플라스틱 재활용을 위한 정전선별 기술개발)

  • Jeon, Ho-Seok;Park, Chul-Hyun;Kim, Byoung-Gon;Park, Jai-Koo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.23-33
    • /
    • 2005
  • The development of material separation technique for waste plastic recycling are the necessary situation according to restrict by law the reclamation and incineration of waste plastic after 2004 year, pith enforcement of EPR (Extended Producer Responsibility) system. As the this study is the research on the development of electrostatic separation techniques for recycling of life circles waste plastic, it can improve separation efficiency according to development of charging material and charger. Therefore, we developed the charger and electrostatic separator to increase charging efficiency and material separation per object plastics, using these equipments, we removed PVC up to 99% from two kinds of mixed plastics. And in case of restricting PVC content such as PET, we developed the separation technique that can remove PVC up to 99.99% from PET with PET recovery about 80%. Also, as we separated over 98% for three kinds of mixed plastics, and then established material separation technique to increase recycling of plastic.

  • PDF

Domestic Trends in Thermochemical Recycling Technology of Waste Plastics (폐플라스틱의 열화학적 재활용 기술 국내 동향)

  • Seon Ah Roh;Tai jin Min;Jin-Tae Kim;Bangwoo Han
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.79-89
    • /
    • 2023
  • One of the foremost environmental challenges, alongside the contemporary focus on achieving carbon neutrality, pertains to the pervasive issue of plastic waste. Thermochemical recycling technology, operating under high-temperature conditions to covert organic matter and recycle it into raw materials and energy, represents a transformative approach surpassing the conventional bounds of material recycling predominantly applied in plastic waste management. The thermochemical recycling paradigm is emerging as a pivotal technology within the circular economy, capable of transforming waste plastics into raw materials for producing original plastics. Its significance extends beyond national borders, garnering global attention due to its versatility as a chemical or energy recycling method, contingent upon the subsequent processes and final products. This study aims to scrutinize three quintessential thermochemical recycling technologies: combustion, gasification, and pyrolysis. Furthermore, the study discusses the recent major technology trends of these technologies.

Current Status and Improvements on Management of Plastic Waste in Korea (국내 폐플라스틱의 관리 현황 및 개선사항)

  • Choi, Yong;Choi, Hyeong-Jin;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.3-15
    • /
    • 2018
  • Since the use of plastics in various goods such as film, containers, and packaging has been increasing in Korea, the generation of plastic waste is increasing. Plastic wastes are managed by waste charge system, Extended Producer Responsibility (EPR) system and voluntary agreement of plastic waste collection-recycling system. Recently, the management of plastic waste is becoming a social issues due to the refusal of the collection of plastic waste including waste plastic bag and waste vinyl. The ministry of environment in korea was set up the comprehensive plan for recycling waste management in accordance with the circulation cycle of manufacturing and production - distribution and consumption - separate and discharge - collection and sorting - recycling. In this study, the improvements for management of plastic waste were suggested with the review of domestic waste plastics management and the comprehensive plan by the ministry of environment.

Waste Reduction Always Pays

  • Lee, B.M.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.194-200
    • /
    • 1992
  • Dow has made waste reduction a priority at its facilites around the world. In 1986, the company formalized its waste reduction under a program called WRAP-Waste Reduction Alwasy Pays. The objectives of WRAP are to seek out cost effective projects that reduce waste to the environment, measure and track performance, and recognize employee excellence. The successful examples of Dow's WRAP Program are introduced as follows : 1. By-Product Feedstock Optimization. 2. Plastics Reclamation. 3. Glucol II Plant Absorber Water Upgradele. 4. Loss Reduction Project.

  • PDF

Feedstock Recycling Technologies using Waste Vinyls (폐비닐을 이용(利用)한 재생원료화(再生原料化) 기술(技術))

  • Chung, Soo-Hyun;Na, Jeong-Gul;Kim, Sang-Guk;Woo, Hee-Myung;Kim, Young-Tae
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.46-54
    • /
    • 2013
  • The produced quantity of waste plastics including waste vinyls was assumed as about 5 million tons per year. The quantity of waste vinyls produced from the waste recycling center among total quantity of waste plastics was estimated as about 1 million tons per year. Most of waste vinyls produced from the waste recycling center were recycled as refuse plastic fuel(RPF) or recycled feedstock material. In this study, the medium material using waste vinyls was made by the melting process of heat medium heating and the tensile strength was analyzed for checking the usable possibility of recycled waste vinyl material by comparing with the existent product. In order to use the medium material for producing the recycled product, it can be considered that the tensile strength of medium material is more than 100 $kgf/cm^2$.