• Title/Summary/Keyword: Waste Gypsum

Search Result 75, Processing Time 0.022 seconds

Formation Behavior of Microporous Ettringite Body by Hydration of Tricalciumaluminate Clinker and Gypsum (알루민산삼칼슘 클링커와 석고의 수화에 의한 에트린자이트 미세다공체 생성거동)

  • Na, Hyeon-Yeop;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.734-738
    • /
    • 2008
  • Ettringite$(3CaO{\cdot}Al_2O_3{\cdot}3CaSO_4{\cdot}32H_2O)$, one of the hydrated phase of Portland cement is usually formed in the early stage of hydration by the reaction of tricalciumaluminate$(C_3A)$ and gypsum. The rapid and strong crystal growth of separated rod-shaped ettringite have been utilized for the preparation of special cements of rapid setting, high strength and non-shrinking properties. The ettringite also has been noticed as a promising materials for the immobilization of various waste ions because of its unique crystal structure which has abundant channels and exchangeable ionic compounds. In this study, the formation and growth behavior of the ettringite was investigated in the system $C_3A-CaSO_4-H_2O$ using $C_3A$ clinker and gypsum to obtain a microporous body for waste ion immobilization. Ettringite was revealed to form by the dissolution-precipitation mechanism and the bulk body was by the entangled growth of rod-shaped ettringite crystals. The hardened body was composed of nearly pure rod-shaped ettringite interlocked each other with adequate mechanical strength. The homogeneity of structure, pore size, specific surface area and porosity of the hardened body were influenced by reaction temperature, water/powder ratio and the curing time. The hardened body prepared with water/powder ratio of 1 at $24^{\circ}C$ for one day showed excellent morphological properties for the purposed materials.

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil

  • Ali, Muhammad Aslam;Lee, Chang-Hoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2007
  • Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane $(CH_4)$ emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. $CH_4$ emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg $ha^{-1}$ of the amendment. At this amendment level, total $CH_4$ emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.

The Influence of FGD Gypsum Fabricated from Limestone Sludge on Cement Properties

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.676-681
    • /
    • 2016
  • For the purpose of reducing the amount of limestone, which is used as a desulfurization agent to absorbing $SO_X$ gas in thermal power plants, and to recycle limestone sludge generated from a steel mill, limestone sludge was utilized as a desulfurization agent. In this study, cement, made of flue gas desulfurization (FGD) gypsum obtained in a desulfurization process using limestone sludge, was manufactured then, experiments were conducted to identify the physical properties of the paste and mortar using the cement. The results of the crystal phase and microstructure analyses showed that the hydration product of the manufactured cement was similar to that of ordinary Portland cement. No significant decline of workability or compressive strength was observed for any of the specimens. From the results of the experiment, it was determined that FGD gypsum manufactured from limestone sludge did not influence the physical properties of the cement also, quality change did not occur with the use of limestone sludge in the flue gas desulfurization process.

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Added Effects of Gypsum on the Solidification of Sewage Sludge Cake (하수슬러지의 고화처리에 미치는 석고첨가의 영향)

  • Kim, Eung-Ho;Lee, Ki-Suk;Cho, Jin-kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2000
  • This study is conducted in order to find more improved solidifying effects than the former converter slag solidification technology. The converter slag is used as a solidifying agent, and the quick lime and the gypsum are used as solidifying aids. Several tests are performed for the purpose of investigating the solidifying effects and the applicability of the solidified sludge as a daily or intermediate landfill cover. The unconfined uniaxial compressive strength, pH and leaching of heavy metal are investigated. In the case of using both quick lime and gypsum as solidifying aids, the compressive strength of specimen has significantly increased that of specimen which used quick lime only. The compressive strength of each specimen cured for 7 days which is mixed with quick lime and gypsum as mixing ratios 7:1, 5:1 and 3:1 are $0.59kg/cm^2$, $1.18kg/cm^2$, and $1.25kg/cm^2$, respectively. The results of all the leaching tests of specimen cured for 7 days show that the concentrations of leachate heavy metals(Cu, Pb, Cd and $Cr^{6+}$) are lower than the Korea toxic waste criteria. The microstructure analysis by SEM shows that needlelike crystals appear as the solidification proceed. The analysis of these crystals by EDS confirms that these main components are Ca. Si etc. Also, XRD analysis shows that the main solidification products are CSH and Ettringite; in addition, $Ca(OH)_2$ CAH are observed. When the added gypsum is used as a solidifying aid, more improved solidifying effects are obtained and the solidified sludge may be appropriately used as a daily or intermediate landfill cover.

  • PDF

Wet Treatment of Fly Ash From Municipal Waste Incinerator with Sulfuric Acid as a Neutralizing Agent (황산(黃酸)을 중화제(中和劑)로 사용(使用)하는 소각(燒却)비산재의 습식(濕式) 처리(處理))

  • Eum, Nam-Il;Song, Young-Jun;Lee, Gye-Seung;Yoon, Si-Nae;Kim, Youn-Che;Jang, Yoon-Ho;Shin, Kang-Ho;Park, Charn-Hoon
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.16-24
    • /
    • 2006
  • In this study, the neutralization and dechlorination process of MWI(Municipal Waste Incinerator) fly ash with $H_2SO_4$ are investigated to recover HCI, which is delivered from the reaction of chloride in the ash and sulfuric acid. The coarse crystalline gypsum and fine impurity containing heavy metal are also separated by 500# wet screening followed by recrystallization of the dechlorinated ash mainly made of $CaSO_4$. As a results, Using 100g MWI fly ash and 85g cone. sulfuric acid as raw material, 52.6g hydrochloric acid with 35% assay and 116.9g crystalline gypsum with 98% or more assay are recovered. In this process, 7.85g fine impurity containing heavy metal and 2.65g coarse impurity are also separated.

Synthesis and Properties of Calcium Sulfoaluminate Clinker Using Waste Shell, Spent Oil-Refining Catalyst and Desulfurized Gypsum (폐패각-정유폐촉매-배연탈황석고를 사용한 Calcium Sulfoaluminate 클링커의 합성과 특성)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.483-489
    • /
    • 2005
  • For the raw materials of 3CaO$\cdot$3Al$_{2}$O$_{3}$ $\cdot$CaSO$_{4}$(CSA) clinker manufacturing, the applications of industrial wastes such as waste shell, spent oil-refining catalyst and desulfurized gypsum were examined. The c1inkerbility of the raw mix and the behaviour of formation of clinker minerals were studied and then some hydraulic properties of cements containing the clinker were also investigated. By virtue of the high reactivity of thermally decomposed raw materials, CSA clinkers were obtained at relatively low temperature of 1250$^{\circ}C$ and thus oil-refining catalysts were more desirable than aluminium hydroxide as an aluminous raw material. The expansive cement samples showed somewhat lower flow value than that of OPC, but their compressive strengths were developed earlier and higher than that of OPC due to formation of ettringite in the early hydration time, which indicated the possibility of practical use of low-cost CSA clinker using industrial wastes only.