• 제목/요약/키워드: Waste Gypsum

검색결과 75건 처리시간 0.024초

Recovery and Refining Process of Gypsum from Waste Plaster Board

  • Song, Young-Jun;Hiroki Yotsumoto
    • 자원리싸이클링
    • /
    • 제10권6호
    • /
    • pp.43-52
    • /
    • 2001
  • This study was conducted to obtain granular crystalline gypsum that can be used as raw material for Plaster boards or cements from waste Plaster board. Gypsum could be Preferentially disintegrated to gypsum needle in $10\mu\textrm{m}$ or less size by hydration after the dehydration of crushed waste Plaster board. The finer the gypsum needle, it is easier to remove coarse impurities and to recover the gypsum needle. The optimum conditions for obtain the finer gypsum size were dehydration rate of 75~85%, solid concentration at hydration of 10~15%, agitation speed of 250~400 rpm, crushing size before dehydration of 2 cm or less. Gypsum of 98.21% grade was recovered with 99.0% yield as the undersize of 325 mesh wet screening followed by the dehydration-hydration process performed at the conditions of dehydration rate of 80%, solid concentration at hydration of 15%, agitation speed of 300 rpm, crushing size before dehydration of 2 cm or less. After the recrystallization of recovered gypsum, Plate-like gypsum of $151\mu\textrm{m}$ size with 99.49% grade was obtained as the oversize of 270 mesh in a wet screening.

  • PDF

폐석고의 공학적 특성 및 환경적 영향 분석에 관한 연구 (Geotechnical Properties and Environmental Effect of Waste Gymsum)

  • 신은철;오영인;이희재
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.90-94
    • /
    • 1999
  • Waste gypsum is produced about 2.6million tons per year as a by-product in the process of TiO$_2$production. Geotechnical properties such as natural water content, specific gravity, Atterberg limits were determined to figure out the engineering characteristics waste gypsum. Grain-size distribution, compaction, CBR tests, and unconfined compression test for various mixing ratios between waste gypsum and decomposed granite soil 8t dredged soil. The environmentally adverse effect for mixed specimen with waste gypsum is far below than those of regulatory requirement.

  • PDF

Recover of gypsum from waste plaster board and the refining process

  • Song, Young-Jun;Hiroki Yotsumoto
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.342-348
    • /
    • 2001
  • This study was conducted to obtain granular crystalline gypsum that can be used as raw material for plaster boards or cements from waste Plaster board. We could disintegrate preferentially gypsum to gypsum needle in 10${\mu}{\textrm}{m}$ or less size among the contents of waste plaster board (gypsum, paper, fiber, and inorganic material .etc.) by hydration afterwards the dehydration of crushed waste plaster board. In this case, the optimum conditions for minimizing the size of gypsum were dehydration rate of 75%~ 85%, hydration concentration of 10~20%, agitation speed of 250~400rpm, crushing size of 2cm or less. Gypsum of 98.21% grade was recovered with 99.0% yield from under screenings of 325mesh wet screening which followed by the dehydration-hydration process performed in the conditions of dehydration rate of 80%, hydration concentration of 15%, agitation speed of 300rpm, crushing size of 2cm or less. Subsequently, Plate-like Crystalline gypsum of is 151${\mu}{\textrm}{m}$ size and the grade of 99.49% with the Yield of 98.0% from the upper screenings of 270mesh wet screening carried out after the re-crystallization of the recovered gypsum needle slurry.

  • PDF

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF

부생석고를 이용한 건설재료 활용화 방안 연구 (The Study on the Development of Construction Materials with Chemical By-product Gypsum)

  • 조병완;김영진;황의민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.351-354
    • /
    • 2000
  • In recent years, the world development of alternative construction materials is associated with disposal problems of waste materials as a result of industrial activities. Technologies of refining gypsum to several gypsum modifications ($\alpha$ and $\beta$-hemihydrate) which can be used as construction material in a large scale do actually exist or are under development. This paper provides a technical and economic perspective of the waste gypsum treatment. Especially, several applications particularly of $\alpha$-hemihydrate will be presented, e.g. artificial gypsum aggregate and light-weight masonry units.

  • PDF

Rheological Studies, Physico-Mechanical Properties, Thermal Properties and Morphology of PVC/Waste-Gypsum Composites

  • Nguyen, Vu-Giang;Kang, Hae-Jun;Kang, Sang-Yong;Jung, Da-Woon;Ko, Jin-Whoan;Thai, Hoang;Do, Quang-Tham;Kim, Myung-Yul
    • Composites Research
    • /
    • 제27권3호
    • /
    • pp.115-121
    • /
    • 2014
  • The effect of addition of gypsum on the rheology, physico-mechanical properties, thermal properties and morphology development of polymer composites based on polyvinyl chloride (PVC) and waste-gypsum with and without methylene-butadiene-styrene (MBS) has been studied. It was shown that the replacement of gypsum for methylene-butadiene-styrene (MBS) component in PVC/gypsum polymer composites enhanced the tensile strength and stiffness of composites, but gradually decreased its impact strength. The observation of morphology, the results of the physico-mechanical properties and thermal properties proved simultaneously that PVC/gypsum composite with the waste-gypsum content of 22.56 wt% reached the optimum results among five kinds of PVC/gypsum polymer composite materials investigated.

Application of Recycled Gypsum on Alkali Soil for Improving Agricultural Productivity in China

  • Akio, Tokuumi;Tsureyasu, Yanagi;Sun, Yi;Gao, Yushan;Zhao, Xiezhe
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.102-105
    • /
    • 2001
  • Gypsum has been known as a prominent material for improving alkali soil, and this material can be supplied easily in large scale by recycling waste gypsum plasterboard from construction and demolition sites in advanced countries. In April 2000, in the part of western Jilin Province in China, where alkali soil spread vastly, we conducted a cultivating experiment of corn and rice after treating with granule recycled waste gypsum at six alkali soil fields which total area were 14000$m^2$. We confirmed that pH of soil decreased in a short period and alkali soil changed soft a desirable condition for farm work, and furthermore, gypsum caused to accelerate the growth of a plant, both corn and rice.

  • PDF

폐석고를 시멘트 대체재로 활용한 콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Concrete Using the Waste Gypsum)

  • 김남욱;송인;박래선;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.69-76
    • /
    • 2007
  • 도시와 산업의 급속한 성장에 따라 폐기물의 발생량이 급증하고 있어 그 처리가 중요한 문제로 대두되고 있다. 현재 폐기물 처리에 대한 국내의 정책방향은 폐기물의 발생 자체를 억제하고, 기 발생된 폐기물은 적절한 환경적 처리를 거쳐 재활용하는 자원순환형 폐기물 관리체계로 정착되어 가는 추세이기 때문에 폐기물 및 산업부산물의 재활용이 크게 부상되고 있다. 대량으로 발생되는 폐기물의 하나인 폐석고는 지정폐기물로 분류되어 왔으나, 1994년 이후에는 일반폐기물로 분류되었으며, 처리비용 및 불순물 제거기술 부족 등으로 재활용이 극히 미비하였다. 그러나 최근들어 반건식 탈황공정 등을 이용한 불순물 제거기술이 개발되어 폐석고의 재활용에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 폐석고를 콘크리트용 시멘트 대체재로의 활용 가능성을 규명하고 적정대체율을 도출하기 위하여 볼밀처리 전 후의 폐석고의 특성을 분석하였으며, 시멘트 사용량의 0, 5.0, 7.5, 10.0 및 12.5%를 폐석고로 대체한 콘크리트 시험체에 대한 강도 및 특성시험을 수행하였다.

폐석고 침전제를 이용한 불소폐수 처리특성 (Treatment Characteristics of Fluoride Wastewater by Waste Gypsum as a Precipitant)

  • 김성준;전용태;원찬희
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.919-925
    • /
    • 2010
  • The features of precipitating reaction of fluoride have been examined by employing waste gypsum as a precipitant. The major component of waste gypsum was examined to be CaO with minor components of $SO_3$, $SiO_2$. In the experimental condition, the precipitating reaction of fluoride progressed rapidly within a few minutes after the reaction started and reached its equilibrium in 10 minutes. Kinetic analysis showed that the precipitating reaction of fluoride generally followed a first Oder and second Oder with decreasing rate constant with the initial dosage of precipitant. XRD analysis showed that the crystalline structure of precipitate was mainly $CaF_2$ with partly $Ca_5(PO_4)_3(OH)$.

석고종류 및 소각장애시 치환율 변화에 따른 고로슬래그 미분말 활용 무시멘트 모르타르의 공학적 특성 (Engineering Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum)

  • 박준희;황금광;김준호;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.222-223
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar.The replacement ratio of dihydrate gypsum and anhydrite gypsum was fixed as 0 and 10%, the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 10% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF