• 제목/요약/키워드: Waste Glass

검색결과 352건 처리시간 0.03초

폐유리를 혼입한 강섬유보강 콘크리트의 물리ㆍ역학적 특성에 관한 실험적 연구 (An Experimental Study on Physical and Mechanical Properties of Steel Fiber Reinforced Concrete Containing Waste Glass)

  • 박승범;이봉춘;조광연;이택우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.903-908
    • /
    • 2002
  • The production of waste glasses has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). When used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. In this study, we conducted basic experimental research to analyze the possibilities of recycling of amber waste glass as fine aggregates for steel fiber reinforced concrete. Test results of fresh concrete. slump is decreased because grain shape is angular and air content is increased due to involving small size particles so much in waste glasses. Also. tensile and flexural strengths increased as the content of steel fibers increased. In conclusion, the content of waste glass below 40% is reasonable and usage of pertinent admixture is necessary to obtain workability or air content.

  • PDF

폐유리 색상별 잔골재를 치환한 모르타르의 강도에 관한 연구 (A Study on the Strength of Mortar Substituted Fine Aggregate by Waste Glass Color)

  • 조수연;김건우;신종현;정의인;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.112-113
    • /
    • 2021
  • Since natural sand is being depleted, research is being conducted to use glass similar to sand as an aggregate. When non-reusable waste glass is crushed and used as fine aggregate, it is known that alkali of cement and silica of glass react to cause an alkali aggregate reaction. The purpose of this study is to provide basic data by studying the strength according to color to use waste glass as fine aggregate. When 10% was replaced, both flexural and compressive strength showed strength values similar to those of Plain. When replaced by 20% and 30%, the 7-day intensity was higher than that of Plain. In addition, colorless glass was found to have the highest strength among glass colors. More research is expected to be needed to become a fine aggregate of waste glass.

  • PDF

폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질 (Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler)

  • 성찬용;김태호
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

폐유리분말과 재생골재를 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질 (Engineering Properties of Permeable Polymer Concrete for Pavement using Powdered Waste Glass and Recycled Coarse Aggregate)

  • 성찬용;김태호
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.59-65
    • /
    • 2011
  • This study was performed to evaluate the compressive and flexural strength, void ratio and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The compressive and flexural strength of permeable polymer concrete for pavement using powdered waste glass were in the range of 16.8~19.7 MPa and 4.7~6.1 MPa, respectively. it was satisfied the regulation of permeable concrete for pavement (18 MPa and 4.5 MPa). The void ratio and permeability coefficient were decreased with increasing the powdered waste glass, respectively. The void ratio and permeability coefficient were satisfied national regulation of permeable concrete for pavement (8 % and $1{\times}10^{-2}$ cm/s). In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Accodingly, the powdered waste glass can be used for permeable concrete material.

폐 유리의 가수 분해반응에 의한 발포유리의 제조(I) - 폐유리의 가수분해 반응 - (Production of Foamed Glass by Using Hydrolysis of Waste Glass (I) - Hydrolysis of Waste Glass -)

  • 이철태;이홍길
    • 공업화학
    • /
    • 제16권4호
    • /
    • pp.519-526
    • /
    • 2005
  • 소다석회 조성의 폐 유리를 발포유리의 원료로 활용하기 위해 폐유리의 가수분해를 시도하였다. 소다석회유리 조성으로 만들어진 판유리 및 병 유리 등은 공히 가압 하에서 증기상의 물 또는 액체상의 물에 의해 효율적으로 가수분해가 진행되었다. 최적의 가수분해의 조건은 공히 $250^{\circ}C$, 2 h이었으며 이 조건하에 얻어진 수화유리의 함수율은 발포유리의 원료유리로서 발포화가 가능한 7.85~10.04%였다. 수식제인 Na성분은 액상의 물에 의한 가수 분해에 효율적이며 유시시료에 대한 중량비로서 0.04첨가 시 가장 높은 함수율을 지닌 수화유리가 얻어졌다.

폐유리 미분말을 혼입한 모르타르의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Mortar with Powdered Waste Glasses)

  • 김호수;백철우;박조범;전준영;류득현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.805-808
    • /
    • 2006
  • At the present time, as part of the movement of natural resource conservation, there have been doing many recycling research works for wasted concrete, etc. In this study, we carried out an experiment for using crushed waste glass as a binder. It dealt with comparative analysis of the engineering properties of mortar containing crushed waste glass through a physical experiment. The experimental variables are the crushed waste glass powder substitution ratio(C-type : $0{\sim}25%$, B-type : $0{\sim}50%$, F-type : $0{\sim}100%$). According to this study, As the substitute of waste glass powder increases, air content and unit weight, the compressive strength decreases exactly proportion to the substitute ratio of waste glass powder. if, when waste glass is substituted as the binder, it is necessary to use an admixture.

  • PDF

폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구 (Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide)

  • 김경석;추용식
    • 자원리싸이클링
    • /
    • 제28권6호
    • /
    • pp.54-63
    • /
    • 2019
  • 본 연구에서는 폐유리를 골재로 재활용하고자 폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 압축강도 및 길이 변화율 등을 검토하였다. 3일 및 7일 압축강도는 일반 모래 대체용 폐유리 사용량이 증가할수록 상승하였다. 특히, 폐유리 사용량이 10~50% 범위일 경우, 압축강도는 큰 폭으로 상승하는 경향을 나타내었다. 더불어 폐유리 50% 조건에서도 산화 그래핀의 첨가량이 증가됨에 따라 압축강도가 상승하였으며, 0.2%를 첨가하였을 때, 압축강도는 42.6 N/㎟ 이었다. 폐유리의 사용량이 증가됨에 따라 모르타르의 길이 변화율은 증가하였으나, 50% 이상에서는 길이변화율이 감소하는 경향도 나타내었다. 폐유리 사용량 50% 모르타르에서는 산화 그래핀 첨가량이 증가할수록 길이 변화율이 감소하는 경향을 나타내었으며, 이는 산화 그래핀의 시멘트 수화반응 촉진작용과 이온이동 억제효과로 추정되었다.

폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구 (Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates)

  • 박승범;이봉춘;권혁준
    • 콘크리트학회논문집
    • /
    • 제13권3호
    • /
    • pp.213-220
    • /
    • 2001
  • 콘크리트에 폐유리의 사용은 알칼리 실리카 반응(ASR)의 팽창으로 균열과 강도저하를 일으킬 수 있다. 본 연구에서는 폐유리의 혼입률과 색상(갈색, 녹색) 및 폐유리로 인해 발생되는 ASR팽창을 저감시키기 위해 섬유의 종류(강섬유, 폴리프로필렌섬유)와 섬유혼입률에 따른 ASR팽창과 강도특성을 분석하였다. 연구결과 녹색의 폐유리가 팽창량이 비교적 작기 때문에 갈색의 폐유리보다 더욱 유용하며, ASTNM C 1260의 시험에 있어서 폐유리의 혼입으로 인한 퍼시멈(pessimum)량은 발견되지 않았다. 또한, 폐유리와 함께 섬유의 혼입은 폐유리의 실리카와 시멘트 페이스트의 알칼리 사이의 ASR로 인한 팽창과 강도 저하를 저감시키는데 효과적인 것으로 나타났다. 특히 폐유리 혼입률 20%에 대해서 강섬유를 1.5vol.% 혼입하였을 경우 팽창은 40%까지 감소하였으며 휨강도는 폐유리만을 혼입한 것(8$0^{\circ}C$ $H_2O$ 양생)에 비해 110%의 강도발현을 나타내었다.

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process

  • Young Hwan Hwang;Mi-Hyun Lee;Cheon-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.271-281
    • /
    • 2023
  • A study was conducted on the vitrification of the rare earth oxide waste generated from the PyroGreen process. The target rare earth waste consisted of eight elements: Nd, Ce, La, Pr, Sm, Y, Gd, and Eu. The waste loading of the rare earth waste in the developed borosilicate glass system was 20wt%. The fabricated glass, processed at 1,200℃, exhibited uniform and homogeneous surface without any crystallization and precipitation. The viscosity and electrical conductivity of the melted glass at 1,200℃ were 7.2 poise and 1.1 S·cm-1, respectively, that were suitable for the operation of the vitrification facility. The calculated leaching index of Cs, Co, and Sr were 10.4, 10.6, and 9.8, respectively. The evaluated Product Consistency Test (PCT) normalized release of the glass indicated that the glass satisfied the requirements for the disposal acceptance criteria. Furthermore, the pristine, 90 days water immersed, 30 thermal cycled, and 10 MGy gamma ray irradiated glasses exhibited good compressive strength. The results indicated that the fabricated glass containing rare earth waste from the PyroGreen process was acceptable for the disposal in the repository, in terms of chemical durability and mechanical strength.