• Title/Summary/Keyword: Waste Generation

Search Result 729, Processing Time 0.029 seconds

The Status of Radioactive Waste Generation in HANARO (하나로의 방사성 폐기물 발생 현황)

  • 강태진;임인철;최호영;이용섭
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.377-385
    • /
    • 2004
  • The quantity of radioactive waste generated from HANARO operation for the years of 1996 to 2003 has been analysed. It was found that the solid waste of $72, 999{\ell}$ and liquid waste of $263, 576{\ell}$ have been generated for the past 8 years. The amounts of Ar-41, I-131 and H-3 exhausted to the environment were 1, 225.6 Ci, 1.612E-2 Ci and 210 Ci, respectively.

  • PDF

Management Strategies of Livestock Waste Minimization and Resource Conservation

  • Kim, Kyung-Sook;Won, Hyo-Joung;Chung, Jae-Chun;Choi, Deuk-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • There is no simple method to solve livestock waste problems satisfactorily. For a successful solution, various methods should be well organized orderly depending upon the situation. Even in the livestock waste management, integrated waste management principle should be applied. Minimization of livestock waste generation is the first priority. It is also important to distribute fairly livestock farms throughout the nation. Efficient management of permit system is equally important. Permit should be given only when the farmer have enough grass-land on which the farmer can apply more than two thirds of livestock waste generated or when the farm have an anaerobic digestor in which store livestock waste generated for at least 3 months. In principle, livestock waste should be treated in the farm and it is desirable to operate composting facilities in the farm site too.

  • PDF

Studies on syngas production and gas engine generation of soild waste gasification in the fixed bed gasification melting furnace (고정층 가스화 용융로에서의 고상폐기물 가스화 합성가스 생산 및 가스엔진 발전 연구)

  • Gu, Jae-Hoi;Kim, Su-Hyun;Yoo, Young-Don;Yun, Yong-Seung;Lee, Hyup-Hee;Nam, Sang-Ik;Yoon, Jae-Kwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.717-720
    • /
    • 2007
  • The 3 ton/day-scale pilot plant consists of compressor, feed channel, fixed bed type gasification & melting furnace, quench scrubber, demister, flare stack and gas engine. Syngas composition of gasification using the 35.50(waste I), 4.34%(wasteII) moisture-containing solid waste showed waste I CO 25-35%, 20-40% hydrogen, waste II 25-35%, 20-30% hydrogen. Gasification melting furnace was operated $1,500{\sim}1,600^{\cdot}C$. Gas engine was generated $35{\sim}40$ kW as waste gasification syngas.

  • PDF

Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants (NPP) in Kenya

  • Shadrack, A.;Kim, C.L.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • This paper describes basic plans for the development of a radioactive waste disposal facility with the introduction of Nuclear Power Plants (NPPs) for Kenya. The specific objective of this study was to estimate the total projected waste volumes of low- and intermediate-level radioactive waste (LILW) expected to be generated from the Kenyan nuclear power programme. The facility is expected to accommodate LILW to be generated from operation and decommissioning of nuclear power plants for a period of 50 years. An on-site storage capacity of 700 $m^3$ at nuclear power plant sites and a final disposal repository facility of more than 7,000 $m^3$ capacity were derived by considering Korean nuclear power programme radioactive waste generation data, including Kori, Hanbit, and APR 1400 nuclear reactor data. The repository program is best suited to be introduced roughly 10 years after reactor operation. This study is important as an initial implementation of a national LILW disposal program for Kenya and other newcomer countries interested in nuclear power technology.

Nuclear Corrosion: Achievements and Challenges

  • Feron, Damien
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Corrosion science faces new challenges in various nuclear environments. Three main areas may be identified where increases of knowledge and understanding have been done and are still needed to face the technical needs: (i) the extension of the service time of nuclear power plants from 40 years, as initially planned, to 60 years and probably more as expected now, (ii) the prediction of long term behaviour of metallic materials in nuclear waste disposal where the corrosion processes have to be predicted over large periods of time, some thousands years and more, (iii) the choice of materials for use at very high temperatures as expected in Generation IV power plants in environments like gas (helium), supercritical water, liquid metals or salts. Service time extension, deep geological waste repositories and high temperature reactors sustain researches and developments to model corrosion phenomena at various scales, from atoms to components.

Evolution of Sudokwon Landfill: from Waste Containment to Energy Generation

  • Chung, Moon-Kyung;Kim, Yun-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.186-193
    • /
    • 2009
  • Since its opening in 1992, Sudokwon Landfill has become a landfill in which wastes generated from more than 22 million people are treated and disposed of. Its first phase landfill was closed in 2000 and the second phase landfill is in operation since then. The Korean environmental policies on refuse have drastically evolved for the last decade or so. From merely safe containment of wastes, the utilization of them as a source for energy generation and the minimization of waste volume to be filled in landfills are in the mainstream. Keeping in pace with the new trends, several challenging projects are in their way to blossom in Sudokwon Landfill. This paper briefs some important activities in the landfill. They are (1) geotechnical issues related to the construction and maintenance of the $1^{st}$ and $2^{nd}$ Landfills and (2) landfill gas and bioreactor which are recently emerging in the market.

  • PDF

Effect of Clean Plate Education on Food Wastes Reduction in University Dormitory (빈그릇교육을 통한 대학 기숙사의 음식물쓰레기 감량효과에 대한 연구)

  • Lee, Eun-Kyeong;Kim, Deok-Gil;Kim, Seung-Woo;Jung, Sin-Young;Choi, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.865-873
    • /
    • 2012
  • Clean plate education program was applied to change students' perception on food waste in the dormitory cafeteria of T campus G university that is located in Tongyeong, in which 408 students joined the program. From survey and food waste monitoring, it was found that clean plate education program was effective to change students' perception as well as action. Half students (50.5%) answered that their eating habit changed, and among them 30.1 % students left a little food on the plate and 13.1% students left no food behind. Many students become aware of the seriousness of food waste issue (84.5%), and 44.2% students were trying to reduce leftover. Food waste generation in cafeteria was 341.9, 576.1, 344.3g/capita/day in 2005, 2007 and 2008, respectively. And this shows that food waste generations were much less than national average data except 2007. Therefore we could conclude that clean plate education program was satisfactory to change students' perception on food and to change their action, and it could be an excellent new approach to resolve a social issue caused by food waste. In order to reduce food waste generation at dormitory cafeteria, food taste and diet should be improved and students' eating habits also should be changed. For this, a practical program like clean plate education should be organized.

A Study on Estimating Recycling Potential of Demolition Waste Generated in End-of-Life of Buildings by Structural Type Considering Economic Efficiency (경제적 효율성 측면에서 건축물 구조를 고려한 해체폐기물의 재활용가능성에 관한 연구)

  • Cha, Gi-Wook;Kim, Jin Ho;Moon, Hyeun Jun;Kim, Young-Chan;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.153-161
    • /
    • 2020
  • This study investigates the recycling potential of demolition waste (DW) according to building structure, while considering economic aspects. For that, this study surveyed 1,034 residential buildings to collect reliable information on demolition waste generation rates (DWGRs). This study suggested a method for operational cost calculation for each stage and carried out an inventory analysis. The economic value of recycled DW materials was also calculated. And then, the recycling potential(RP) was calculated by building structures and waste types. RP by building structure was low (27-40%), and RP was found in the order of masonry-block, wooden, RC and concrete-brick. By type of DWs, the RP of aggregates was considerably lower than 7%, and DWs such as wood, plastics, and metals showed more than 100% RP. Considering the results of this study, In order to improve the RP of buildings and DWs, the diversification of products that recycled waste like aggregates (i.e., mortar, concrete, bricks, blocks, tiles) and the development of high value-added products are considered to be the most urgent problems. Based on the above RP results, this study proposed a more advanced method for life cycle assessment of buildings and demolition waste.

Exploring sustainable resources utilization: Interlink between food waste generation and water resources conservation

  • Adelodun, Bashir;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.232-232
    • /
    • 2019
  • The persistence of drought periods and water scarcity is a growing public concern, as climate change projections indicate a more critical scenario in the future. The sustainability of water resources for the increasing population, and to ensuring crop production will unarguably be a daunting task for the water resources managers, with a projected 9.8 billion people by 2050 as well as the need to increase food production by 70 to 100%. Consequently, there is a need for significant irrigation water use for more crop production in the face of stiff competition among water users. However, the available natural resources are already over-constrained, and the allocation of more resources for food production is not feasible. Currently, about two-thirds of global water withdrawer is used by the agricultural sector while 48% of water resources in Korea is used for agricultural production. Despite the apparent ecological deficit and unfavorable conditions of resources utilization, a staggering amount of food waste occurs in the country. Moreover, wastage of food translates to waste of all the resources involved in the food production including water resources. Food waste can also be considered a serious potential for economic and environmental problems. Hence, exploring an alternative approach to efficient resources utilization in a more sustainable way can ensure considerable resources conservation. We hypothesized that reducing food waste will decline the demand for food production and consequently reduce the pressure on water resources. We investigated the food wastage across the food supply chain using the top-down datasets based on the FAO mass balance model. Furthermore, the water footprint of the estimated food wastage was assessed using the representative of selected food crops. The study revealed that the average annual food wastage across the food supply chain is 9.05 million tonnes, signifying 0.51 kg/capita/day and 48% of domestic food production. Similarly, an average of 6.29 Gm3 per annum of water resources was lost to food wastage, which translates to 40% of the total allotted water resources for agriculture in the country. These considerable resources could have been conserved or efficiently used for other purposes. This study demonstrated that zero food waste generation would significantly reduce the impact on freshwater resources and ensure its conservation. There is a need for further investigation on the food waste study using the bottom-up approach, specifically at the consumer food waste, since the top-down approach is based on estimations and many assumptions were made.

  • PDF

Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component (고전력 전자소자에서 열전생성기의 생성효율과 열적성능)

  • Kim, Kyoung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • This paper reports the generation efficiency and the thermal performance of a thermoelectric generator (TEG) harvesting energy from the waste heat of high power electronic components. A thermoelectric (TE) model containing thermal boundary resistances is used to predict generation efficiency and junction temperature of a high power electronic component. The predicted results are verified with measured values, and the discrepancy between prediction and measurement is seen to be moderate. The verified TE model predicts generation efficiencies, junction temperatures of the component, and temperature differences across a TEG at various source heat flows associated with various electrical load resistances. This study explores effects of the load resistance on the generation efficiency, the temperature difference across a TEG, and the junction temperature.