• Title/Summary/Keyword: Waste Facilities

Search Result 763, Processing Time 0.025 seconds

A Study on the Optimization of District Heating and Cooling Facilities (지역냉난방사업의 설비 최적화에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.505-530
    • /
    • 2006
  • For the district heating and cooling business, it is required to install energy-saving facilities using energy from waste and land fill gases such as combined heat and power(CHP). The current issues that this business faces can be summarized as below: which facilities including CHP can be economically introduced and how much of their capacities should be. Most of such issues are clearly related to the optimal plant design of the district heating and cooling business, and the prices of energy services such as heating and cooling energy, and electricity. The purpose of this study is to establish linear program model of least cost function and to practice the empirical test on a assumed district heating and cooling business area. The model could choose the optimal type of energy-producing facilities among various kinds available such as CHP's, absorption chillers, the ice-storage system, etc. CHP with the flexible heat and power ratio is also in the set of available technologies. And the model show us the optimal ration of heat producing facilities between CHP and historical heat only boiler in the service area. Some implications of this study are summarized as below. Firms may utilize this model as a tool for the analysis of their optimal size of the facilities and operation. Also, the government may refer the results to regulate resonable size of business.

  • PDF

Remodeling Process Model Applying Service Life and Functionality Evaluation for Military Facilities (내용연수와 기능성 평가를 활용한 군 시설물 리모델링 대상 선정 프로세스 모델)

  • Cho, Jongwoo;Lee, Hyun-Soo;Park, Moonseo;Kim, Jaegon;Moon, Hyo-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.41-52
    • /
    • 2015
  • The number of military facilities has been rapidly increased due to growing requirement of modernization and military welfare. However, adequate maintenance has not implemented to these facilities. As a result, they are deteriorated quickly and require performance enhancement treatments. There are two ways of performance enhancement, reconstruction and remodeling. Despite the research result that remodeling within the standard remodeling range is more economical, remodeling of military facilities is not considered equivalent to reconstruction as an option of performance improvement. Therefore, derived from the relationship between performance change during life cycle of building and range of remodeling needs, this study tries to propose Remodeling Process Model(RPM) which uses a method to choose remodeling in a Specific Point of Time(SPT) when remodeling is considered more economical than reconstruction. In addition, this study suggests practical service life and functionality evaluation standard together which require to realize the RPM. This RPM make it possible to avoid the cases that facilities which do not have any problem on structural reliability but have low level of functionality miss appropriate remodeling timing and inevitably choose reconstruction as a performance improvement option. It also present the possibility of simple reconstruction / remodeling decision-making for facility managers who administrate building having various type, compilation and elapsed time. Consequently, this process model focusing on remodeling more may contribute to reduce resource waste caused by reconstruction.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.

A Study on the Feasibility of COBie to the Wastewater Treatment Plant (COBie 기반 하수처리시설 유지관리시스템 구축)

  • Choi, Jae-Ho;Um, Dong-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.273-283
    • /
    • 2014
  • With the introduction of COBie (Construction Operation Building Exchange) in BIM technology enabling an automatic transfer of design and construction information to operation and management (O&M) phase, the BIM centric O&M management system development process has been tested on the subject of architectural types of building. However, for now, there is a need to investigate the technical feasibility of COBie application to civil structures including industrial facilities. This study takes both "O&M Guideline for Public Wastewater Treatment Plant" and a real wastewater treatment plant into account for the purpose, in which the latter is intended to supplement the result of the first. The findings are three-folds: (1) COBie, as an asset modeling, is not sufficient enough to encompass commissioning data, (2) more relevant IFC development and family library build-up useful to modeling wastewater treatment plant is imperative, and (3) well-planned coordination and organization of COBie data-set in line with O&M practice will enhance the feasibility of the COBie in industrial facilities. The result could be used for a basis study for COBie application, particularly in industrial facilities.

A Review of Renal Dialysis Unit Environment for Infection Prevention - Focused on Evidence Based Design (감염 예방을 위한 인공신장실 의료 환경에 대한 고찰 - 근거 기반의 디자인 중심으로)

  • Han, Su Ha;Yoon, Hyungjin
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.3
    • /
    • pp.49-57
    • /
    • 2018
  • Purpose: The increase in patients requiring hemodialysis has resulted in an increase dialysis-associated infections risk. but there are no Renal Dialysis unit design standard meet specified safety and quality standards. Therefore, appropriate Establish standards and legal regulation is important for the provision of initial certification and maintenance of facility, equipment, and human resource quality. Methods: Literature survey on the design guideline and standards of Renal Dialysis unit design in Korea, U.S, Germany, Singapore, Hongkong, Dubai. Results: There are no established standards for facilities in dialysis units in Korea. To prevent infections in dialysis patients, necessary establish standards. Considering the domestic and overseas Health-care facilities standards, the major factors to be considered in the medical environment for Renal Dialysis Unit are as follows. First, planning to separate Clean areas(treatment area) from contaminated areas(medical waste storage area). Second, ensure sufficient space and minimum separation distance. Although there may be differences depending on the circumstances of individual institutions, renal dialysis unit consider the space to prevent droplet transmission. Third, secure infrastructure of infection prevention such as sufficient amount of hand hygiene sinks. Hand washing facilities for staff within the Unit should be readily available. Hand hygiene sinks should be located to prevent water from splashing into the treatment area. Fourth, Heating, ventilation and air conditioning (HVAC) system for Renal Dialysis Unit is all about providing a safer environment for patients and staff. Implications: The results of this paper can be the basic data for the design of the Renal Dialysis Units and relevant regulations.

How do the work environment and work safety differ between the dry and wet kitchen foodservice facilities?

  • Chang, Hye-Ja;Kim, Jeong-Won;Ju, Se-Young;Go, Eun-Sun
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.366-374
    • /
    • 2012
  • In order to create a worker-friendly environment for institutional foodservice, facilities operating with a dry kitchen system have been recommended. This study was designed to compare the work safety and work environment of foodservice between wet and dry kitchen systems. Data were obtained using questionnaires with a target group of 303 staff at 57 foodservice operations. Dry kitchen facilities were constructed after 2006, which had a higher construction cost and more finishing floors with anti-slip tiles, and in which employees more wore non-slip footwear than wet kitchen (76.7%). The kitchen temperature and muscular pain were the most frequently reported employees' discomfort factors in the two systems, and, in the wet kitchen, "noise of kitchen" was also frequently reported as a discomfort. Dietitian and employees rated the less slippery and slip related incidents in dry kitchens than those of wet kitchen. Fryer area, ware-washing area, and plate waste table were the slippery areas and the causes were different between the functional areas. The risk for current leakage was rated significantly higher in wet kitchens by dietitians. In addition, the ware-washing area was found to be where employees felt the highest risk of electrical shock. Muscular pain (72.2%), arthritis (39.1%), hard-of-hearing (46.6%) and psychological stress (47.0%) were experienced by employees more than once a month, particularly in the wet kitchen. In conclusion, the dry kitchen system was found to be more efficient for food and work safety because of its superior design and well managed practices.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

A Study on Environment-Friendly Characteristics of campus buildings for creating a green campus (그린캠퍼스 조성을 위한 대학건물의 친환경적 특성에 관한 연구)

  • Jeong, Sook-In;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.221-228
    • /
    • 2009
  • Recently severity of ecological adaptation and climatic change due to global warming grows larger. According to the fourth report of IPCC in 2007, emission quantity of the earth greenhouse gas(GHGs) generated by activity of mankind increased with 80% since 1970. And it is forecasted that worldwide greenhouse gas will be increased with 25~90%(corresponding to $CO_2$) between 2000 and 2030. This increment of greenhouse gas($CO_2$) is expected to raise average temperature of the earth with the maximum $6.4^{\circ}C$, and sea surface with 59cm in 2090. Like this, destruction of environment by greenhouse gas is regarded as universal problem threatening the existence, not only the problem of one nation. Consequently, systematic correspondence to the global warming at the aspect of energy consumption is also needed in Korea. From the analysis result of 'Statistics of Energy Consumption' published by Green Korea in 2007, energy consumption increment of domestic universities was higher as many as 3.7 times than 22.5% of the whole energy consumption increment in our country. This says to be the direct example which shows that universities are huge sources of greenhouse gas emission. New constructing and enlarging buildings of each universities within campus are the most major reason for such a large increment of energy consumption in universities. The opinion that the possibility of causing energy waste and efficiency reduction is raised by increased buildings of universities has been propounded. That is, universities should make concrete goal and the plan for reducing emission of green house gas against climatic change, and should practice. Accordingly, there is the meaning that 2 aspects of environment-friendly design characteristics, that is application of energy utilizing technology, material usage of energy efficiency-side and environment-side, and introduction of natural element in the environmental aspect, were analyzed for facilities of university campus designed in environment-friendly point of view from initial stage of plan, and direction of environment-friendly design of university facilities in the future was groped in order to grasp environment-friendly design tendency of internal and external University facilities based on this analysis of this paper.

Nitrate Contamination of Shallow Groundwater in an Agricultural area having Intensive Livestock Facilities (축사가 밀집된 농촌지역 천부지하수의 질산염 오염특성)

  • 김연태;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • Nitrate contamination by human activities is a serious problem to water-supply in agricultural area. Shallow groundwater is the main source of water-supply, but it is very sensitive to contamination. Study area for nitrate contamination is a region of Iljuk, Kyunggi where is an agricultural area having many livestock facilities in various scales. As a result, the points having availability of incoming of external contaminant are 77%, and the ones over the Drinking Water Limit (DWL) are 32~42%. For a nitrogen isotope analysis, all the points having availability of incoming of external contaminant have $\delta$$^{15}$ N-NO$_3$ values over 5$\textperthousand$, and the points of 59% are strongly affected by nitrogen originated from animal wastes. The major source of nitrate in this area is intensive livestock facilities. Even though a livestock facility had enclosed, it affects groundwater quality for a long time. The chemical property of contaminant source is various according to animal species in surface water, but not in groundwater since some solutes are removed by reactions during an inflow to subsurface.