• Title/Summary/Keyword: Waste Facilities

Search Result 754, Processing Time 0.032 seconds

Climate Change Issues of Paper Manufacturing Production at Phong Khe Craft Village

  • Ha, Vu Thi Hong;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.40-50
    • /
    • 2018
  • Today, the development of industries and rapid urbanization has a profound impact on the human environment. It can be said that the environment in the craft village is most affected. The environment in these areas is severely degraded and depending on the type of production, the environment in the craft villages is different. In Phong Khe ward of Bac Ninh Province, Vietnam, there are over 204 small and large facilities of recycling and producing paper. The paper facilities produce about 200,000 tons of paper each year and the amount of paper produced is not less than 500 tons each day in Phong Khe. They are creating livelihoods for more than 6,000 workers and generating local budgets from VND- 50 billion to VND 60 billion per year. Despite this great contribution, the use of old machines and "backward" modes of production means that paper recycling has caused serious air, soil, and water pollution in the region. The specific objectives of this study were as follows: (1) provide an overview of paper production process in the Phong Khe paper craft village; (2) comprehensive literature review of the current status of water environment, atmosphere environment, soil environment and solid waste; (3) figure out about waste treatment in Phong Khe ward.

Review for Items of Decommissioning Plan and Standard Review Plan (해체계획서 및 심사지침서 항목에 관한 고찰)

  • Kim H. S.;Son J. K.;Park K. R.;Kang K. D.;Kim K. D.;Ha J. H.;Jeong C. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.40-48
    • /
    • 2005
  • The licensees are to submit the decommissioning plan to regulatory body to decommission nuclear facilities. The standard review plan(SRP) of decommissioning is used to confirm and evaluate the decommissioning plan by the related regulations and standards. The licensees who want to decommission the nuclear facilities are required to submit the decommissioning plan according to Acts 31 of Atomic Energy Law. In this study, the items of reports and documents submitting to regulatory body were reviewed deliberately, and finally the major sub-items of decommissioning plan were established.

  • PDF

Ambient Air Waste Sorting Facilities Could Be a Source of Antibiotic Resistant Bacteria

  • Calheiros, Ana;Santos, Joana;Ramos, Carla;Vasconcelos, Marta;Fernandes, Paulo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.367-373
    • /
    • 2021
  • The antimicrobial resistance of Staphylococcus spp. and Gram negative strains present in air samples from waste sorting facilities was assessed. Phenotypic studies have revealed a high percentage of strains of Staphylococcus spp. resistant to methicillin. Genotypically and by RT-PCR, it was found that the mecA gene usually associated with methicillin resistance was present in 8% of the Staphylococcus strains isolated. About 30% of the Gram negative strains from the same samples also displayed resistance to meropenem and 79% of these were resistant to multiple antibiotics from different classes, namely cephalosporins and β-lactams. The results suggest that in professional activities with high levels of exposure to biological agents, the quantification and identification of the microbial flora in the work environment, with the determination of the presence of potential agents displaying multi-resistances is of relevance to the risk assessment. The personal protection of workers is particularly important relevance in these cases, since many of the strains that exhibit multi-resistance are potential opportunistic agents.

Gastrointestinal endoscopy's carbon footprint

  • Su Bee Park;Jae Myung Cha
    • Clinical Endoscopy
    • /
    • v.56 no.3
    • /
    • pp.263-267
    • /
    • 2023
  • Climate change is a global emergency. Consequently, current global targets to combat the climate crisis include reaching net-zero carbon emissions by 2050 and keeping global temperature increases below 1.5 ℃. In 2014, the healthcare carbon footprint was 5.5% of the total national footprint. Gastrointestinal endoscopy (GIE) has a large carbon footprint compared to other procedures performed in healthcare facilities. GIE was identified as the third largest generator of medical waste in healthcare facilities for the following reasons: (1) GIE is associated with high case volumes, (2) GIE patients and relatives travel frequently, (3) GIE involves the use of many nonrenewable wastes, (4) single-use devices are used during GIE, and (5) GIE is frequently reprocessed. Immediate actions to reduce the environmental impact of GIE include: (1) adhering to guidelines, (2) implementing audit strategies to determine the appropriateness of GIE, (3) avoiding unnecessary procedures, (4) using medication rationally, (4) digitalization, (5) telemedicine, (6) critical pathways, (7) outpatient procedures, (8) adequate waste management, and (9) minimizing single-use devices. In addition, sustainable infrastructure for endoscopy units, using renewable energy, and 3R (reduce, reuse, and recycle) programs are necessary to reduce the impact of GIE on the climate crisis. Consequently, healthcare providers need to work together to achieve a more sustainable future. Therefore, strategies must be implemented to achieve net-zero carbon emissions in the healthcare field, especially from GIE, by 2050.

A Landscape Design of Metro-politan Resources Withdrawal Institution of East Area, Gyeonggi-Do (경기도 동부권 광역자원 회수시설 조경설계)

  • Lee Soo-Dong;Jang Jong-Su;Kang Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.113-127
    • /
    • 2006
  • As the local self-government are stabilized and the environmental value is becoming more important among local residents, the occurrence of the anti-movements against waste treatment facilities is getting more frequent. Opposing to build the reuse facilities of wastes takes place because of concerning of health and hygiene, as well as matters of unclear policy making process. However, these facilities must be built in somewhere for the convenience and profit of the public. The NIMBY phenomenon against reuse facilities of wastes could be a burden for the city operation system, and it could worsen citizens' quality of life in the long run. In these lights, reuse and recycling facilities of wastes in East region are necessary facilities improving citizens' quality of life and enhancing the growth of cities in the region. However, there have been concerning of deforestation during the construction process of the facilities. The landscape design presented here for these facilities considers the features of the environmental ecosystem and tries to establish a plan to preserve the natural environment of the City of Ichon. This paper presents methods minimizing adverse effects of the facilities on the existing environments and promoting the city image with integrating culture, tourism, landscape and environment of the city. The landscape design makes efforts to harmonize natural environments in the site, human activities and culture. Well-being park was aimed to lead healthy and energetic outdoor activities of local residents. Ecological park was aimed to enhance the ecological functions of the forests and restore the valley ecology. Culture park was aimed to capture the city identity by creating a place that contains all the variety of meanings of the City of Ichon.

Site Selection Methods for High-Level Radioactive Waste Disposal Facilities: An International Comparison (고준위방사성폐기물 처분시설 부지선정 방식 해외사례 분석)

  • HyeRim Kim;MinJeong Kim;SunJu Park;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 2023
  • Site selection processes for high-level radioactive waste disposal facilities in different countries differ in terms of local geology and degree of public engagement. There seem to be three alternative processes for site selection: (1) selection with community consent after government choice; (2) selection with continuous community engagement after exclusion of unsuitable areas based on existing survey data; or (3) site selection where communities have expressed a willingness to participate. The Yucca Mountain site in Nevada, USA, was selected as the final disposal site by process (1) through six stages, but its development was suspended owing to opposition from the local governor and environmental groups. In Sweden, Switzerland, and Germany, process (2) is used and sites are selected through three stages. Sweden and Switzerland have completed site selection, and Germany is currently engaged in the process. The UK adopted process (3) with six stages, although the process has been suspended owing to poor community participation. In Korea, temporary storage facilities for spent nuclear fuel will reach saturation from 2030, so site selection must be promoted through various laws and systems, with continuous communication with local communities based on transparent and scientifically undertaken procedures.

Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste (해체 콘크리트 폐기물 최종처분을 위한 시멘트 고화체 특성 평가)

  • Lee, Yoon Ji;Hwang, Doo Seong;Lee, Ki Won;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. And concrete waste was generated about 800 drums of 200 L. The conditioning of concrete waste is needed for final disposal. The concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled void space after concrete rubble pre-placement into 200 L drum. Thus, this research has developed an optimizing mixing ratio of concrete waste, water, and cement and has evaluated characteristics of a cement waste form to meet the requirements specified in disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10wt% as the optimized mixing ratio. Also, the compressive strength of cement waste form was satisfied that including fine powder up to maximum 40wt% in concrete debris wastes about 75%. As a result of scale-up test, the mixture of concrete waste, water, and cement is 75:10:15wt% meet the satisfied compressive strength because the free water increased with and increased in particle size.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Fig Manure and Food Waste(I): (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(I): 현장조사 결과 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.91-100
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. In accordance with the government's mid-to long-term policies on bio-gasification and energization of organic wastes, the expansion of the waste-to-energy (WTE) facilities is being remarkably promoted. However, because of the limitation of livestock manure containing low-concentration of volatile solids, there has been increased in combined bio-gasification without installing new anaerobic digestion facilities. The characteristics and common problems of each treatment processes were investigated for on-going 13 bio-gasification facilities. The seasonal precision monitoring of chemicophysics analysis on anaerobic digestor samples was conducted to provide guidelines for design and operation according to the progress of bio-gasification treatment. Consequently, major problems were investigated such as large deviation of organic materials depending on seasons, proper dehumidification of biogas and pretreatment of hydrogen sulfide.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF