• Title/Summary/Keyword: Waste Acids

Search Result 195, Processing Time 0.025 seconds

Performance Enhancement of Anaerobic Treatment of Waste Sludge by Chemical Pretreatment (화학적 전처리를 통한 혐기성 슬러지 처리효율의 향상)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.16-25
    • /
    • 1998
  • Laboratory-scale experiment using anaerobic fluidized bed reactor was carried out to investigate the prehydrolysis step with caustic soda on the treatment efficiency of anaerobic sludge treatment, since the overall rate-limiting step for the complete anaerobic digestion of sludge was the hydrolysis step by extracellular bacterial enzymes of insoluble polymeric molecules. Reactors received a sludge which had not been pretreated, a 50-50 mixture of pretreated and untreated sludge, and the fully pretreated sludge. Hydraulic retention time of 10, 5, 2.5 days and 1 day were applied with an respective equivalent organic loading rate of 1.17, 2.23, 4.17, 11.24 gCOD/L/d. Reactor with the untreated sludge did not archieve adequate digestion even at the HRT of 5 days, and reactor, which received the 50-50 mixture, operated well at the HRT of 5 days, but began to show signs of unstable digestion at the HRT of 2.5 days. While, reactor, which was fed the hydrolyzed sludge, operated reasonably well at the 2.5 days, but was showing somewhat decrease in removal efficiencies. Results, therefore, have substantiated that the limiting reaction in the anaerobic treatment process is hydrolysis. The soluble COD did not significantly accumulate in the reactor as organic acid form, even when they were highly stressed. It was believed that this resistance to a build-up of organic acids and soluble COD behavior was mainly due to the maintenance of the methane bacteria in the fixed-film system which prevents washout as the organic loading increased. The anaerobic fluidized bed reactor was therefore effective for the digestion of waste activated sludge at short HRT.

  • PDF

Proximate Composition and Microbial Content Change of Broiler Waste Silage by Mixing with Wheat Bran and Oven-drying (닭폐기 부산물 Silage와 소맥피 혼합 및 오븐건조에 따른 일반성분과 미생물 총균수 변화)

  • Cha, Sang-Hyup;Cho, Jae-Huy;Chung, Kun-Sub;Chang, Pahn-Shick;Yi, Young-Hyoun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.63-67
    • /
    • 1995
  • Broiler processing waste(offal) was homogenized and treated with the combination of acids. The offal was autolyzed(ensiled) at $25^{\circ}C$ for 72 hrs and analyzed for pH and fatty acid profile. The proximate composition and microbial content change of the autolyzed offal by mixing with wheat bran and ovendrying were evaluated. The initial pH value of the homogenized offal, 6.52 came down to 2.75 within 5 min after acidification and increased silightly to $3.06{\sim}2.92$ during autolysis. The proximate composition and fatty acid profile of the autolyzed offal were not substantially different from the unautoylzed offal. However, the log CFU(colony forming units)/g of total plate counts and fungal counts decreased from 7.45 and 7.11 to 3.39 and 2.03 after autolysis, respectively.

  • PDF

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview

  • Raman, Jegadeesh;Jang, Kab-Yeul;Oh, Youn-Lee;Oh, Minji;Im, Ji-Hoon;Lakshmanan, Hariprasath;Sabaratnam, Vikineswary
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Pleurotus species are commercially essential mushrooms and widely cultivated throughout the world. The production of Pleurotus mushrooms alone accounts for around 25% of that total cultivated mushrooms globally. In America and Europe, Pleurotus species are considered specialty mushrooms, whereas, in Korea, their cultivation is economically profitable, and it is one of the highly consumed species. Pleurotus species are predominantly found in tropical forests and often grow on fallen branches, dead and decaying tree stumps, and wet logs. Biographical studies have shown that the Pleurotus genus is among the more conspicuous fungi that induce wood decay in terrestrial ecosystems worldwide due to its formidable lignin-modifying enzymes, including laccase and versatile peroxidases. Pleurotus species can be grown easily due to their fast colonization nature on diversified agro-substrates and their biological efficiency 100%. Pleurotus mushrooms are rich in proteins, dietary fiber, essential amino acids, carbohydrates, water-soluble vitamins, and minerals. These mushrooms are abundant in functional bioactive molecules, though to influence health. Pleurotus mushrooms are finding unique applications as flavoring, aroma, and excellent preservation quality. Apart from its unique applications, Pleurotus mushrooms have a unique status delicacy with high nutritional and medicinal values. The present review provides an insight into the cultivation of Pleurotus spp. using different agro-waste as growth substances paying attention to their effects on the growth and chemical composition.

Yeast Extract: Characteristics, Production, Applications and Future Perspectives

  • Zekun Tao;Haibo Yuan;Meng Liu;Qian Liu;Siyi Zhang;Hongling Liu;Yi Jiang;Di Huang;Tengfei Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.151-166
    • /
    • 2023
  • Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.

Characteristics of Histamine Forming Bacteria from Tuna Fish Waste in Korea (국내 참치 부산물 내 히스타민 생성 주요 세균의 특성 구명)

  • Bang, Min-Woo;Chung, Chang-Dae;Kim, Seon-Ho;Chang, Moon-Baek;Lee, Sung-Sil;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.277-283
    • /
    • 2009
  • Biogenic amines are generally formed through the decarboxylation of specific free amino acids by exogenous decarboxylases released by microbial species associated with the fish products and fermented feeds. This study was conducted to investigate the properties of e tuna waste regarding the control of degradation of biogenic amines (histamine, tyramine, tryptamine, putrescine, and cadaverine) that might be related with the anti-nutritional factor of the tuna waste that is used for manufacturing domestic fish meal. The values of pH and the salt content were 6.51, 3.35% in tuna waste and 5.58 and 5.83% in tuna fish meal, respectively. The strains and dominant bacteria tested in the tuna waste sample were 9.20, 9.29, 5.67, 7.82 and 7.58 log CFU/g of total bacteria, aerobic plate count (APC), total coliform (TC), Lactobacillus spp. and Bacillus spp., respectively. The main histamine forming-bacteria (HFB) in tuna waste were detected by silica gel thin-layer chromatography (TLC) and 7 histamine-forming bacterial species were isolated among microbes grown in selective medium. The histamine concentration was determined by detection of fluorescence of ο-phthaldialdehyde (OPA) derivatives using HPLC and the date were used to reconfirm the identities of the amine-producing bacteria. The 15 histamine- forming bacteria strains grown in trypicase soy broth (TSB) supplemented with 1% L-histidine (TSBH) were identified as Lactococcus(L.) lactis subsp. lactis, Klebsiella pneummonlae, L. garvieae 36, Vibrio olivaceus, Hafnia alvei and L. garvieae which were main dominant amine - producing strains, and Morganella morganii identified by 16S ribosomal RNA (rRNA) sequencing with PCR amplification. A Phylogenetic tree generated from the 16S rRNA sequencing data showed different phyletic lines that could be readily classified as biogenic amine forming gram-positive and negative bacteria.

Culture Conditions of Aspergillus oryzae in Dried Food-Waste and the Effects of Feeding the AO Ferments on Nutrients Availability in Chickens (건조한 남은 음식물을 이용한 Aspergillus oryzae균주 배양조건과 그 배양물 급여가 닭의 영양소 이용률에 미치는 영향)

  • Hwangbo J.;Hong E. C.;Lee B. S.;Bae H. D.;Kim W.;Nho W. G.;Kim J. H.;Kim I. H.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.291-300
    • /
    • 2005
  • Two experiments were carried out to assess the appropriate incubation conditions namely; duration, moisture content and the ideal microbial inoculant for fermented dried food waste(EW) offered to broilers. The nutrient utilization of birds fed the FW diets at varying dietary inclusion rates was also compared with a control diet. In Experiment 1, different moisture contents(MC) of 30, 40, 50 and $60\%$ respectively were predetermined to establish the ideal duration of incubation and the microbial inoculant. A 1mL Aspergillus oryzae(AO) $(1.33\times10^5\;CFU/mL)$ was used as the seed inoculant in FW. This results indicated that the ideal MC for incubation was $40\~50\%$ while the normal incubation time was > 72 hours. Consequently, AO seeds at 0.25, 0.50, 0.75 and 1.00mL were inoculated in FW to determine its effect on AO count. The comparative AO count of FW incubated for 12 and 96 hours, respectively showed no significant differences among varying inoculant dosage rates. The FW inoculated with lower AO seeds at 0.10, 0.05 and 0.01mL were likewise incubated for 72 and 96 hours, respectively and no changes in AO count was detected(p<0.05). The above findings indicated that the incubation requirements for FW should be $%40\~50\%$ for 72 hours with an AO seed incoulant dosage rate of 0.10mL. Consequently, in Experiment II, after determining the appropriate processing condition for the FW, 20 five-week old male Hubbard strain were used in a digestibility experiment. The birds were divided into 4 groups with 5 pens(1 bird per pen). The dietary treatments were; Treatment 1 : Control(Basal diet), Treatment 2 : $60\%$ Basal+4$40\%$ FW, Treatment 3 : $60\%$ $Basal+20\%\;FW+20\%$ AFW(Aspergillus oryzae inoculate dried food-waste diet) and Treatment 4: $60\%$ Basal+$40\%$ Am. Digestibility of treatment 2 was lowed on common nutrients and amino acids compared with control(p<0.05) and on crude fat and phosphorus compared with AFW treatments(T3, T4)(plt;0.05). Digestibility of treatment 3 and 4 increased on crude fiber and crude ash compared treatment 2 (p<0.05). Digestibility of control was high on agrinine, leucine, and phenylalnine of essential amino acids compared with treatment 3 and 4(p<0.05), and diestibility of treatment 3 and 4 was improved on arginine, lysine, and threonine of essential amino acids. Finally, despite comparable nutrient utilization among treatments, birds fed the dietary treatment containing AO tended to superior nutrient digestion to those fed the $60\%$ Basa1+$40\%$ FW.

Optimization of Peptides Production Derived from By-product Viscera of Yoensan Ogae Meat Process (연산 오계 부산물 내장육으로부터 펩타이드 생산 최적 공정 개발과 생산물의 특성 분석)

  • Ji, Joong Gu;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2016
  • Korean Black body fowl (Gallus gallus domesticus; Ogae) designated as a natural monument (registration number 265) has been known as a superb traditional Korean medicine. In this study, The production of peptide from the Viscera Waste of Yeonsan Ogae was optimized using commercial protease (bromelain) by response surface methodology under high pressure process. The range of processes was pressure (30 to 100 MPa), reaction time (1 to 5 h), and substrate concentration (10 to 30%, w/v). After reaction, the degree of hydrolysis, distribution of amino acids, and molecular weight of peptides were investigated. As a results, the optimization conditions were pressure 90 MPa, reaction time 3 to 4 h, and the amount of viscera meat 20% (w/v), respectively. The molecular weight of protein hydrolysates was distributed 400 to 1,000 Da. Accordingly we presumed that most products were peptides. Of those peptides, nonpolar or hydrophobic, polar but uncharged, positively charged, and negatively charged amino acids were 42.03, 26.0, 13.3, and 18.6%, respectively. Because higher amount of hydrophobic amino acids, we expected that those products would be able to utilize as the functional food ingredients.

Feeding Effect of Citrus Byproduct on the Quality of Cross-bred Black Pig in Jeju Island (육성기 및 비육기에 급여한 감귤 부산물이 제주도 개량 흑돼지 고기의 품질특성에 미치는 영향)

  • Yang, Seung-Joo;Koh, Seok-Min;Yang, Tae-Ik;Jung, In-Chul;Moon, Yoon-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.897-902
    • /
    • 2006
  • This study was carried out to investigate the possibility for utilization of waste materials and the characteristics of pork by feeding citrus byproducts. The groups consisted of the pork without citrus byproduct (TB-0) and the pork fed with 6% and 10% citrus byproduct during growing and fattening period (TB-1). The contents of moisture, crude protein, crude fat, crude ash, vitamin $B_1$ and $B_2$, total amino acids, and caloric were not significantly different between TB-0 and TB-1 (p>0.05). The contents of cholesterol and the magnesium of TB-1 were lower than those of TB-0. Palmitic acid was the most abundant among saturated fatty acids while oleic acid was the most abundant among unsaturated fatty acids in both groups. In case of sensory score, the color and aroma of raw meat and taste, texture, juiciness and palatability of boiled meat were not influenced by feeding of citrus byproduct. But the flavor preference of boiled meat of TB-1 was higher than that of TB-0.

Modeling the Catalytic Activity and Kinetics of Lipase(Glycerol-Ester Hydrolase)

  • Demirer, Goksel N.;Duran, Metin;Tanner, Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • In order to design industrial scale reactors and proceises for multi-phase biocatalytic reactions, it is essential to understand the mechanisms by which such systems operate. To il-lustrate how such mechanisms can be modeled, the hydrolysis of the primary ester groups of triglycerides to produce fatty acids and monoglycerides by lipased (glycerol-ester hydrolase) catalysis has been selected as an example of multiphase biocatalysis. Lipase is specific in its behavior such that it can act only on the hydrolyzed (or emulsified) part of the substrate. This follows because the active center of the enzyme is catalytically active only when the substrate contacts it in its hydrolyzed form. In other words, lipase acts only when it can shuttleback and forth between the emulsion phase and the water phase, presumably within an interphase or boundary layer between these two phases. In industrial applications lipase is employed as a fat splitting enzyme to remove fat stains from fabrics, in making cheese, to flavor milk products, and to degrade fats in waste products. Effective use of lipase in these processes requires a fundamental understanding of its kinetic behavior and interactions with substrates under various environmental conditions. Therefore, this study focuses on modeling and simulating the enzymatic activity of the lipase as a step towards the basic understanding of multi-phase biocatalysis processes.

  • PDF