• Title/Summary/Keyword: Warm-up catalyst

Search Result 17, Processing Time 0.021 seconds

Numerical Analysis of Effective Turbocharger and Baffle on Flow Field in Warm-up Catalyst for Diesel Vehicles (디젤자동차용 웜업촉매 내의 유동장에 미치는 터보차저 및 배플의 영향에 관한 수치해석)

  • Choi, Byung-Chul;Juhng, Woo-Nam;Kang, Chang-Hyuk;Wi, Dae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • Diesel vehicle is growing in importance in light-duty sector as a way of reducing greenhouse gases due to improved fuel economy. Carbon monoxide, gas-phase hydrocarbon and organic fraction of diesel particulates can be oxidized to harmless products using a diesel warm-up catalyst (WCC). This study investigated the effect of a turbocharger and a baffle on flow fields and temperature distributions in the WCC for Diesel vehicles by a numerical analysis. In the case of the WCC with the turbocharger, velocity vectors and temperatures of inlet of the WCC have the relatively homogeneous distributions by the swirl generated from the turbocharger. Velocity vectors and temperatures of inlet of the WCC with the turbocharger and the baffle have the improved distributions in homogeneity compared with the case of the WCC without the baffle. The homogeneous flow field and the temperature distribution in the WCC may contribute to improve the conversion performance of the catalysts.

A Theoretical Study on Exhaust Gas Reduction by Oxidation Catalyst in Diesel Engine (디젤기관에서 산화촉매장치에 의한 배기가스 저감에 관한 이론적 연구)

  • 한영출;김종춘;김태섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.179-189
    • /
    • 1997
  • Among aftertreatment devices which reduce exhaust gas of diesel engine, diesel oxidation catalyst(DOC) with high reduction efficiency for gaseous matter and particulate matter is now studied actively. In this study, a transient one-dimensional model developed to simulate the thermal and conversion characteristics of adiabatic monolithic converters operating under warm up conditions is presented. This model takes into account the gas solid heat and mass transfer, axial heat conduction, chemical reactions and the related heat release. The model has been used to analyze the transient response of an axisymmetric catalytic converter during a warm-up as a function of catalyst design parameters and operation conditions in order to observe their effects on the lightoff behaviour. The experimental test was carried out 2400 cc light diesel engine with DOC.

  • PDF

OXIDATION CHARACTERISTICS OF PARTICULATE MATTER ON DIESEL WARM-UP CATALYTIC CONVERTER

  • Choi, B.C.;Yoon, Y.B.;Kang, H.Y.;Lim, M.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • Modern passenger cars with diesel engines are equipped with DOC(diesel oxidation catalyst) for the purpose of reducing HC and CO in the exhaust stream. Cold start exhaust emissions pose troubles here as on gasoline engine vehicles. As a result, some of the diesel passenger cars roll off todays the assembly lines with WCC(warm-up catalytic converter). Oxidation characteristics of the particulates in WCC is analyzed in this study by EEPS(engine exhaust particulate size spectrometer). The maximum number of PM is found to come out of WCC in sizes near 10nm when an HSDI diesel engine is operated under the conditions of high speed and medium to heavy load. When the temperature of the WCC exceeds $300^{\circ}C$, the number of PM smaller than 30 nm in diameter sharply increases upon passing through the WCC. Total mass of emitted PM gets reduced downstream of the WCC under low speed and light load conditions due to adsorption of PM onto the catalyst. Under conditions of high speed and medium to heavy load, the relatively large PM shrink or break into fine particles during oxidation process within the WCC, which results in more mass fraction of fine particles downstream of the WCC.

An Experimental Study on the Reduction of Exhaust Emissions by using Glow Plug during Cold-start and Warm-up in Gasoline Engine (가솔린기관의 냉시동시 Glow Plug를 이용한 배기가스저감에 관한 실험적 연구)

  • 문영호;김종호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • In order to reduce exhaust omissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to directly reduce engine out exhaust emissions, during cold starting and warm up process. Therefore many researchers have been attracted to develop an early fuel evaporator(EFE) by Introducing a ceramic heater fur a solution of engine out exhaust emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has not been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug far EFE. Impinging spray using heated and unheated glow plug helps the vaporization of the fuel and heat up the three way catalyst sufficiently. The amount of CO, and UHC is reduced overall. The amount of NOx is higher at the initial stage, but become lower as time goes on than without glow plug.

AN EXPLORATORY STUDY OF THE EMISSION REDUCTION TECHNOLOGIES COMPLIANT WITH SULEV REGULATIONS

  • Kim, In Tak;Lee, Woo Jik;Yoon, Jong Seok;Park, Chung Kook
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.63-75
    • /
    • 2001
  • This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spray atomization, quick warm-up through coolant control shut of, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, after-treatment such as thin-wall catalyst, HC-adsorber and EHC and etc, through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow (대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구)

  • Shin, Suk-Jae;Kim, Jong-Il;Jung, Young-Chul;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.

Numerical Study on the Effect of Volume Change of Light-Off Catalyst on Light-Off Performance (저온활성촉매변환기의 체적변화가 활성화 성능에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.87-100
    • /
    • 2000
  • HC and CO emissions during the cold start contribute the majority of the total emissions in the legislated driving cycles. Therefore, in order to minimize the cold-start emissions, the fast light-off techniques have been developed and presented in the literature. One of the most encouraging strategies for reducing start-up emissions is to place the light-off catalyst, in addition to the main under-body catalyst, near the engine exhaust manifold. This study numerically consider three-dimensional, unsteady compressible reacting flow in the light-off and under body catalyst to examine the impact of a light-off catalyst on thermal response of the under body catalyst and tail pipe emission. The effect of flow distribution on the temperature distribution and emission performance have also been examined. The present results show that flow distribution has a great influence on the temperature distribution in the monolith at the early stage of warm-up process and the ultimate conversion efficiency of light-off catalyst is severly deteriorated when the space velocity is above $100,000hr^{-1}$.

  • PDF

Conversion Characteristics of Warm-up Catalytic Converter for the Diesel Vehicle (디젤자동차용 웜업 촉매 시스템의 정화 특성)

  • Choi Byungchul;Juhng Woonam;Yoon Youngbae;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.80-86
    • /
    • 2005
  • In this study, we investigated the characteristics of the conversion efficiency and the effect of ageing Diesel Oxidation Catalyst (DOC). The DOC was composed of Warm-up Catalytic Converter (WCC) and Underbody Catalytic Converter (UCC). As the result, the conversion efficiency of THC was 10$\~$50$\%$ on WCC and 30$\~$40$\%$ on UCC .The conversion efficiency of CO was 80$\~$90$\%$ on WCC and remained 10$\~$20$\%$ of CO was purified on UCC. The WCC shows high conversion efficiency on CO. After 20 hours aging process of engine bench, conversion efficiencies of THC and CO were improved a little, because it was activated catalyst surface by 20 hours aging. In case of 80 hours aging, the conversion efficiencies of THC and CO were decreased on WCC. However, the UCC was not affected by aging process .

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF