• 제목/요약/키워드: Warm Forging Process

검색결과 43건 처리시간 0.018초

자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석 (3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit)

  • 이영선;이정환;이준용;배명한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험 (Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part)

  • 진철규
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

지능형 고정밀 온간단조 기술 (Intelligent High-Precision Warm Forging Process)

  • 이준용;배명한;정순철;서성렬;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.321-325
    • /
    • 2001
  • This paper describes the basic structure of high-precision warm forging process for ball joint socket. If this research is successfully finished, We expect that productivity improvement, reduction of material cost and machining process, and cost down than conventional warm forging process.

  • PDF

윤활제 및 표면 거칠기에 따른 베벨기어의 온간단조 성형성 평가 (Evaluation of Formability for Warm Forging of The Bevel Gear on The Lubricants and Surface Roughness)

  • 김동환;김병민
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.21-28
    • /
    • 2005
  • In the hot forging process lubricant influences on frictional condition only, but in the warm forging process it influence on the formability such as dimensional accuracy, filling state and frictional condition and it is important to estimate a lubricating characteristic of lubricants in the warm forging. In this paper, in order to evaluate the formability of billet in warm forging process according to the lubricant and lubricating method, lubricant and lubricating test have been performed using oil-based and water-based lubricant which were widely used in the hot and warm forging processes. The surface roughness of initial billet was measured to evaluate the influence on the formability of billet and the forming load and dimensional accuracy were compared and evaluated. From the experimental results, it can be known that water-based lubricants are more excellent than oil-based lubricants for warm forging of complex shape like a bevel gear. Also, in this study characteristics of deformation have been investigated according to surface treatment of initial billet.

단조 금형의 윤활, 표면처리 및 금형 수명 평가 (Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments)

  • 김병민
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

다단단조 CV JOINT 생산품의 유한요소해석 (Process analysis of multi-stage forging by using finite element method)

  • 박광수;김봉준;권승오;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2006
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. Traditional warm and cold forging methods have their own limitations to produce such a complex shaped part; warm forging requires complex system with relatively higher manufacturing cost, while cold forging is not applicable to materials with limited formability. Therefore, multistage forging may be advantageous to produce complex shaped parts. In order to build a multistage forging system, it is necessary to characterize mechanical properties in response to system design parameters such as temperature, forging speed and reduction. For the analysis of formability of multistage forging process, finite element method(FEM) has been used for the process analysis. As a model case, a constant velocity (CV) joint forging process is analyzed by FEM, since CV joint has a complex shape and also its required dimensional tolerances are very tight. The data acquired by FEM is compared with operational forging data obtained from an industrial production line. Based on this comparative analysis, multistage forging process for CV joints is proposed.

  • PDF

초소형 스크류 온간 다단 헤딩공정 연구 (Design of a Multi-Step Warm Heading Process for Subminiature Screws)

  • 장연희;정진환;장명근;홍재근;김종봉
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

온간 단조공정을 이용한 타이타늄합금 볼트 제조기술 (Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process)

  • 임성근;김재호;김정한;이채훈;홍재근;염종택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF

신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계 (Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network)

  • 김동환;김병민
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

온간 스파이더 표면결함 개선과 금형수명 향상에 관한 연구 (A Study on the Elimination of Surface Defect and Increase in Tool Life of the Warm Forged Spider)

  • 강종훈
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.82-90
    • /
    • 2020
  • Due to the complicated shape of the spider, the production method was changed from cold to warm forging. Finite element analysis was performed to predict the forging load and shape using the enclosed hydraulic die set. As the forging load increases due to the spider die volume, die stress analyses were performed to optimize the die design in order to reduce the die stress in various conditions. Large deformation while producing the complicated forging parts induces high forging load, which is one of the main parameters of the forging surface defects. The forging process was analyzed to find out the root cause of the surface defects generated during the spider production for various parameters, thereby revealing that the radius of die in the defect zone influenced the air trap depth, being the root cause of the surface defect. It was verified that die life was increased and the surface defect was eliminated by changing the die design during the mass production test.