• Title/Summary/Keyword: Warm Extrusion

Search Result 26, Processing Time 0.021 seconds

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys (AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석)

  • Yoon, D.J.;Kim, E.Z.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

Plastic Forming Characteristics of AZ3l Mg Alloy in Warm Backward Extrusion (온간 후방 압출공정에서 AZ31 Mg 합금의 성형 특성)

  • Yoon, D.J.;Lim, S.J.;Kim, E.J.;Cho, C.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.597-602
    • /
    • 2006
  • Bulk plastic forming characteristics were studied for the magnesium alloy, AZ31 in warm backward extrusion. Effects of process conditions such as extrusion ratio, forming temperature, and punching speed were investigated respectively. Variation of microstructure induced by the warm backward extrusion process was observed. Microstructure of the work piece showed evidences of recrystallization under the experiment conditions. It is estimated that in specific punch speed region fast stroke accelerates recrystllization and reduces the forming load.

Process Conditions for Low Bonding Strength in Pressure Welding of Cu-Al Plates at Cold and Warm Temperatures (Cu-Al 판재의 냉간 및 온간 압접에서 낮은 접합강도를 갖는 공정 조건에 관한 연구)

  • 심경섭;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.623-628
    • /
    • 2004
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism during the cold and warm forming such as clad extrusion or bundle extrusion/drawing. Bonding characteristics between the Cu and Al plates by pressure welding are investigated focusing on the weak bonding. Experiments are performed at the cold and warm temperatures ranging from the room temperature to $200^{\circ}C$. The important factors examined in this work are the welding pressure, pressure holding time, surface roughness, and temperature. A bonding map, which can identify the bonding criterion with a weak bonding strength of IMPa , is proposed in terms of welding pressure and surface roughness fur the cold and warm temperature ranges.

A Research on Lengthening the Life of Warm Forging Die (온간단조금형의 수명연장에 관한 연구)

  • Kim, Sei-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Rotor pole for AC(alternating current) generator is manufactured through transfer warm forging die. As soon as the material is heated at the warm manufacturing process, it is transferred to the first stage for upsetting work and then to the second stage for lateral extrusion work. The processes at the lateral extrusion work such as die block, die bushing, center punch, and side punch make severe condition and abrasion which leads to shorten the die life. This causes production decrease, long maintenance time, and low level of precision. Research on the die material selection, heat process cycle improvement, electric discharge machining trouble solution, and re-construction of main parts is expected to find a method to lengthen the die life up to 40 - 50%.

Numerical Evaluation of Backward Extrusion and Head Nosing for Producing a 6.75L Small Seamless AA6061 Liner (6.75L급 소형 AA6061 라이너의 후방압출 및 노우징 공정에 관한 해석적 연구)

  • Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.204-215
    • /
    • 2013
  • As a pressure vessel, a small seamless aluminum liner with inner volume of about 6.75L is made from an initial billet material of AA6061-O. To produce the aluminum liner, warm forging including backward extrusion and head nosing was numerically simulated using a billet initially pre-heated to about $480^{\circ}C$. Compression tests on the billet material were performed at various temperatures and strain rates, and the measured mechanical properties were used in the numerical simulations. For the backward extrusion and the head nosing, the tool geometries were designed based on the desired configuration of the aluminum liner. Furthermore, the structural integrity of the tooling was evaluated to ensure adequate tool life. The seamless aluminum liner has an endurance limit of about 1.47MPa ($15Kg_f/cm^2$), estimated based on the required inner pressure. The results confirm that the small seamless aluminum liner of AA6061-O can be successfully made by using the two stage warm forging procedures without any bursting failures.

Effect of process type and heat treatment conditions on warm hydroformability (온간액압성형특성에 미치는 압출제조공정과 열처리 조건의 영향)

  • Yi, H.K.;Kwon, S.O.;Park, H.K.;Yim, H.S.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.132-135
    • /
    • 2007
  • In this study, hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes at different extrusion type were investigated. For the investigation, as-extruded, full annealed and T6-treated Al6061 tubes at different extrusion type were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and $250^{\circ}C$. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were estimated by tensile test. And the tensile test specimens were obtained from hexagonal prototype hydroformed tube at $250^{\circ}C$. As for the heat treatment, hydroformability of full annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was post-T6 treated after hydroforming of pre- full annealed tube. However, hydroformed part using T6 pre treated tube represents high strength and low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is cost-effective. Hydroformability of Al6061 tube showed similar value for both extrusion types. But flow stress of seam tube showed $20{\sim}50MPa$ lower value.

  • PDF

A Study on Process Improvement of Combined Extrusion with Aluminum Alloy 7075 (유한요소 시뮬레이션을 이용한 알루미늄 7075 복합 압출재에 대한 공정개선 연구)

  • 김진복;이지억;강범수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.197-205
    • /
    • 1996
  • A combined extrusion process studied here consists of forward and backward extrusion, and it is formed in single operation. The metal flow involved in the operation has appeared to be difficult to analyze accurately because of mixed directions of the flow. In this study, conventional two operations of a forward and a backward extrusions is transformed into one operation of mixed extrusion. A process designed by an industry expert is simulated by the rigid-plastic finite element method to investigate the metal flow and defects. In addition to the FEM simulation, experimental analysis has been carried out to confirm the design in industry, which includes material characterization, preliminary expriment, and whole experimental forming operation. The experimental results show that warm forming of extrusion is more desirable than cold working and hot forming in view of grain growth. Also two conditions of lubrication between workpiece and die has been investigated.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

베어링레이스의 온간성형에있어서 공정개선 및 UBST 해석

  • 김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.171-177
    • /
    • 1995
  • In this paper, the deformation method for inner and outer races of rollr-bearing bymeans of the warm precision forging is investigated. We adapted the process designsuch as following that, toincrease Die life, reduce heat transfer through conduction and the eccentricity of preform in warm forging of bearing gace, the bottom portion of billet is formed during upsetting process. Then it is backward extruded, and thus obtained ring preform is formed by combined extrusion. Also, we compared it with the froming method in China and Japan, and we have known it is more excellent method. Basides, this forming method is simulated by UBST which is based on the merits of UBET nd FEM. The results show that it is easy to know the exact location of neutral surface through the inspection of streamline during combined extrusion, and the velocity vector distribution along the surface of velocity discontinuity is investigationed. Also the effectiveness of this method is proved by te experiment using model material that is Plasticine.

  • PDF