• Title/Summary/Keyword: Warfighting Experiment

Search Result 5, Processing Time 0.015 seconds

Design and Application of the Warfighting Experiment Process Using the Intelligent Maturity Model in Software Intensive Systems (지능형 성숙도 모델을 이용한 소프트웨어 집약 시스템의 전투실험 프로세스 설계 및 적용)

  • Kang, Dong-Su;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.668-673
    • /
    • 2007
  • We propose the design of the warfighting experiment process for software intensive systems using the intelligent maturity model and suggest the application results of the target searching capability in smart UAV. For this, we design the intelligent maturity model to evaluate the intelligent degree of the software intensive systems considering the domain and intelligent level. Then we classify the IS0/1EC-12207 process and CMMI process as LITO domain for designing the warfighting experiment process, map the classifed process to the five factors of the warfighting experiment and derive the process as warfighting experiment element and phase. Based on the derived process, we design the warfighting experiment process using the IDEF0. Finally we apply the proposed process to the target search capability and suggest the results which are required to develop and acquire the smart UAV.

A Study on Warfighting Experimentation for Organizing Operational Troops (작전부대의 인원편성 최적화를 위한 워게임 전투실험 방법에 대한 연구)

  • Lee, Yong-Bin;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.423-431
    • /
    • 2011
  • Warfighting experimentation is an important process for identifying requirements against changing military environment and for verifying proposed measures for reforming military service. The wargame simulation experiment is regarded as one of the most effective means to warfighting experimentation, and its importance is increasing than ever. On the other hand, the results of wargame experiments could be unreliable due to the uncertainty involved in the experimental procedure. To improve the reliability of the experimental results, systematic experimental procedures and analysis methods must be employed, and the design and analysis of experiments technique can be used effectively for this purpose. In this paper, AWAM, a wargame simulator, is used to optimize the organization of operational troops. The simulation model describes a warfighting situation in which the 'survival rate of our force' and the 'survival rate of the enemy force' are considered as responses, 'the numbers of weapons in the squad' as control factors, and 'the uncontrollable variables of the battlefield' as noise factors. In addition, for the purpose of effective experimentation, the product array approach in which the inner and outer orthogonal arrays are crossed is adopted. Then, the signal-to-noise-ratio for each response and the desirabilities for the means and standard deviations of responses are calculated and used to determine a compromise optimal solution. The experimental procedures and analysis methods developed in this paper can provide guidelines for designing and analyzing wargame simulation experiments for similar warfighting situations.

A Study on the Method of Constructive Simulation Operation Analysis for Warfighting Experiment Supplied with the Validation Evaluation (타당성 평가가 보완된 모델 운용상의 전투실험 모의분석 절차 연구)

  • Park, Jin-Woo;Kim, Nung-Jin;Kang, Sung-Jin;Soo, Hyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.77-87
    • /
    • 2010
  • Currently, our society has been changed from the industrial society to the information society. As the war progresses to Information Warfare, Network-Centric Warfare, Long-Range Precision Engagement and Robot Warfare, the military should advance to High-tech Scientific force. For this creation of the war potential, it is regarded as the warfighting experiment is a critical method. Surely it is rational that LVC(Live Virtual Constructive simulation) is desirable to make the warfighting experiment. But because it is limited by the cost, the time, the place and the resource, the constructive simulation(M&S : Modeling&Simulation) is a good tool to solve those problems. There are some studies about the evaluation process for developing the model, but it is unsatisfying in the process of the constructive simulations' operation. This study focuses on the way of constructive simulation operation, which is supplied with the evaluation process(VV&A : Verification Validation & Accreditation). We introduce the example of the rear area operation simulation for "appropriateness evaluation to the organization of logistic corps" by the AWAM(Army Weapon Analysis Model). This study presents the effective methods of the constructive simulations, which is based on the reliable evaluation process, so it will contribute to the warfighting experiments.

A direction of warfighting experiments for a scientific combat Development (과학적 전투발전을 위한 전투실험 발전 방향)

  • Chung, Choon-Il;Lee, Myeong-Woo
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.351-392
    • /
    • 2007
  • Combat Development is process of studying and developing concept, doctrine, weapon systems, organization and training for the improvement of combat capability to be ready present and future warfare. The combat development domain consists of 6 fields Doctrine, Organization, Material, Training, Personnel, and Facilities. The cornerstones of combat development are "How to prepare" and "How to fight" in the future warfare. ROK- TRADOC(Republic of Korea Army Training and Doctrine Command) has implemented combat development that applies CBRS (Concept-Based Requirements System) and "Vision - Capstone concept - operating and functional concept - FOC(Future Operational Capabilities) Requirements". To prepare for the possibility or new types or wars in the future, the creation of new concept and system is essential. Though verification with various instruments, combat power can be secured and exhibited. Combat development by empirical mind estimation means that is no longer relevant.To prepare combat development based on scientific analysis, there is a need for powerful engineering analysis and verification, in order to prepare for uncertain and diverse future battlefield environments. In this thesis, warfighting experiment is essential ways and means to pursue the scientific combat development ; investigated tendency of combat development environment, and analyzed diversification aspects of possible future warfare. In conclusion, concept of campaign experiment and role is the conerstone of scientific combat development; and lays out the roadmap of all affecting components to its development.

  • PDF

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF