• Title/Summary/Keyword: Wall-climbing robot

Search Result 55, Processing Time 0.03 seconds

Optimal Design for a Wall-Climbing Robot with Static and Vibration Characteristics (정적 및 진동 특성을 고려한 수직이동 로봇의 최적설계)

  • Ahn, Seok-Hee;Choi, Kook-Jin;Hong, Dae-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.35-42
    • /
    • 2008
  • Most of tasks for vertical surface work in shipyard have been accomplished by human workers. However, such manual work often causes injury to workers, also the production cost becomes high due to increasing individual wage. To cope with the circumstance, shipbuilding companies try to introduce wall-climbing robots for carrying out such kind of tasks. In designing a wall-climbing robot, it is essential to minimize its own weight to improve the performance such as moving speed and power saving. For such purpose. this study proposes a method of optimal design for a wall-climbing robot using a genetic algorithm with multi-objective function. Specifically, the thickness of the robot base is minimized to reduce the weight while maintaining the allowable strength and avoiding the resonance frequencies. The proposed method is applied to the design of a wall-climbing robot, and the result shows that the method is useful at an early design stage.

A Three-unit Modular Climbing Robot for Overcoming Obstacles on the Facade of Buildings (건물 외벽 장애물 극복을 위한 3단 모듈형 승월로봇)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.114-123
    • /
    • 2017
  • This paper introduces a novel obstacle-climbing robot that moves on the facade of buildings and its climbing mechanism. A winch system set on the top of the building makes the vertical motion of the robot while it climbs obstacles that protrude from the wall surface. The obstacle-climbing robot suggested in this research is composed of a main platform and three modular climbing units. Various sensors installed on each climbing unit detect the obstacles, and the robot controller coordinates the three units and the winch to climb the obstacles using the obstacle-climbing mechanism. To evaluate the performance of the developed robot prototype, a test bed, which consists of an artificial wall and an obstacle, was manufactured. The obstacle size and the time required to climb the obstacle were selected as the performance indices, and extensive experiments were carried out. As a result, it was confirmed that the obstacle-climbing robot can climb various-sized obstacles with a reasonable speed while it moves on the wall surface.

Optimization Design of Dry Adhesion for Wall-Climbing Robot on Various Curvatures Based on Experiment (다양한 곡률에 안정적인 등반 로봇을 위한 건식 점착물질의 실험기반 설계변수 최적화)

  • Liu, Yanheng;Shin, Myeongseok;Seo, TaeWon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the results of a study on the optimal footpad design for vertical climbing on acrylic surfaces with various curvatures used Taguchi methods. For a climbing robot, the adhesion system plays an important role in the climbing process. Only an appropriate adhesion strength will prevent the robot from falling and allow it to climb normally. Therefore, the footpad is a significant parameter for a climbing robot and should be studied. Taguchi methods were used to obtain a robust optimal design, where the design variables were the flat tacky elastomeric shape, area, thickness, and foam thickness of the footpad. Experiments were conducted using acrylic surfaces with various curvatures. An optimized footpad was selected based on the results of the experiments and analysis, and the stability of the wall-climbing robot was verified.

Self Contained Wall--Climbing Robot with Closed Link Mechanism

  • Taehun Kang;Park, Jaejun;Kim, Hyungsuk;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.1-92
    • /
    • 2002
  • $\textbullet$ A compact and robust wall-climbing robot, called MRWALLSPECT-II, is developed. $\textbullet$ The robot is a self-contained system for scanning external surfaces of gas or oil tank. $\textbullet$ The robot has advantages of reduced actuators, parts and easy control. $\textbullet$ The mechanism of the robot employs a closed link mechanism. $\textbullet$ Self-Contained, Wall-Climbing, MRWALLSPECT

  • PDF

Guideline for the Design of Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 설계지침)

  • 이화조;김은찬;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.548-553
    • /
    • 2002
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

  • PDF

Design and Control of Wall Climbing Robot Using Impeller (임펠러를 이용한 벽면이동로봇의 설계 및 제어)

  • Koo, Ig-Mo;Song, Young-Kouk;Moon, Hyung-Pil;Park, Sun-Kyu;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.177-185
    • /
    • 2010
  • In this paper, a wall climbing robot, called LAVAR, is developed, which is using an impeller for adhering. The adhesion mechanism of the robot consists of an impeller and two-layered suction seals which provide sufficient adhesion force for the robot body on the non smooth vertical wall and horizontal ceiling. The robot uses two driving-wheels and one ball-caster to maneuver the wall surface. A suspension mechanism is also used to overcome the obstacles on the wall surface. For its design, the whole adhering mechanism is analyzed and the control system is built up based on this analysis. The performances of the robot are experimentally verified on the vertical and horizontal flat surfaces.

Development of a Torque Distribution Algorithm for Improving Stability and Mobility of the Wall-climbing Robot Platform (ROPE RIDE) Equipped with Triangular Track Wheels (삼각트랙을 구비한 외벽 등반로봇 플랫폼의 안정성 및 이동성 향상을 위한 토크 분배 알고리즘 개발)

  • Cho, Sunme;Seo, Kunchan;Kim, Taegyun;Kim, Jongwon;Kim, Hwa Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.725-732
    • /
    • 2013
  • This paper presents a torque distribution algorithm for improving the stability and mobility of a wall-climbing robot platform. During ascent, the pitch moment caused by the payload or external disturbances separates the robot's triangular tracks from the wall, significantly deteriorating its stability. Moreover, the reaction forces stemming from the increase in the pulling force may degrade the robot's mobility. Thus, it is very important to minimize the reaction forces acting on the triangular tracks, as well as the fluctuations in the pulling force, during the climb. Through dynamic modeling of the proposed robot platform, we demonstrated the dependence of the robot's stability and mobility on the torque distribution of the triangular tracks. Extensive simulations using different climbing speeds were used to significantly improve the stability and mobility of the proposed robot platform.

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.