• Title/Summary/Keyword: Wall-Thinned Evaluation

Search Result 32, Processing Time 0.028 seconds

Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation (신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Review on the Integrity Evaluation and Maintenance of Wall-Thinned Pipe (감육배관의 건전성평가 및 정비 관련 기술기준 고찰)

  • Lee, Sung Ho;Lee, Yo Seob;Kim, Hong Deok;Lee, Kyoung Soo;Hwang, Kyeong Mo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion, cavitation, flashing and/or liquid droplet impingement, is a main concern in secondary steam cycle piping system of nuclear power plants in terms of safety and operability. Thinned pipe management program (TPMP) has being developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning. In this paper, newest technologies, standards and regulations related to the integrity assessment, repair and replacement of thinned pipe component are reviewed. And technical improvement items in TPMP to secure the reliability and effectiveness are also presented.

Integrity Evaluation of Thinned Elbow Based on TES Plastic Load (TES 소성하중 기준의 감육엘보 기기건전성 평가)

  • Lee, Sung-Ho;Park, Chi-Yong;Lee, Jeong-Keun;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.281-286
    • /
    • 2008
  • Wall thinning defect due to flow accelerated corrosion is one of major aging phenomena in most power plant industries, and it results in reducing load carrying capacity of the piping systems. A failure testing system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of thinned elbows. Various finite element models were generated and analysed to figure out and simulate the behavior for other thinning shapes and loading conditions. This paper presents the decreasing trends of load carrying capacity according to the thinning dimensions which were revealed from the investigation of finite element analysis results. A mechanical integrity evaluation model for thinned elbows was proposed, also. This model can be used to calculate the TES plastic load of thinned elbows for general internal pressure, thinning location, and in-plane bending direction.

  • PDF

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

Evaluation of the Burst Pressure for Rectangular Wall-thinning of CANDU Feeder Pipe (사각 감육을 고려한 중수로 공급자관 파열압력 평가)

  • Kwang Soo Kim;Min Kyu Kim;Doo Ho Cho;Jae Joon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The flow accelerated corrosion (FAC) is one of significant aging and degradation mechanism and can affect structural integrity of CANDU feeder pipes. Pipe burst can occur under normal operation pressure (min. 10 MPa) if wall-thinning of the feeder pipe due to FAC is accumulated. Previous studies considered simple shapes of feeder pipe with local wall-thinning in order to conservatively assess structural integrity of wall-thinned feeder pipe. In this paper, a new FE model is developed, having an actual shape of the feeder pipe (double bent) as well as the actual wall-thinning shape and location based on the in-service inspection result. Then, the burst pressure assessment of the wall-thinned feeder pipe is performed using lower bound limit load analysis considering elastic-perfectly plastic material. In addition, an improved formulation to predict the burst pressure of the wall-thinned feeder pipe is presented and the safety margin is compared with an existing assessment method.

Evaluation of Piping Integrity in Thinned Main Feedwater Pipes

  • Park, Young-Hwan;Kang, Suk-Chull
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.67-76
    • /
    • 2000
  • Significant wall thinning due to flow accelerated corrosion(FAC)was recently reported in main feedwater pipes in 3 Korean pressurized water reactor(PWR) plants. The main feedwater pipes in one plant were repaired using overlay weld method at the outside of pipe, while those in 2 other plants were replaced with new pipes. In this study, the effect of the wall thinning in the main feedwater pipes on piping integrity was evaluated using finite element method. Especially, the effects of both the overlay weld repair and the stress concentration in notch-type thinned area on the piping integrity were investigated. The results are as follows : (1) The piping load carrying capacity may significantly decrease due to FAC. In special, the load carrying capacity of the main feedwater pipe was reduced by about 40% during about 140 months operation in Korean PWR plants. (2) By performing overlay weld repair at the outside of pipe, the piping load carrying capacity can increase and the stress concentration level in the thinned area can be reduced.

  • PDF

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.

Fracture Behavior Evaluation of Wall Thinned pipes by Finite Element Analysis (감육배관의 요한요소해석에 의한 파괴거동 평가)

  • AHN SEOK-HWAN;NAM KI-Woo;KIM JIN-WOOK;LEE SOO-SIG;YOON JA-MUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.320-325
    • /
    • 2004
  • Fracture behaviors and strength of pipes with local wall thinning are very important Jar the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on strength and fracture behaviors of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis.

  • PDF