• Title/Summary/Keyword: Wall temperature measurement method

Search Result 88, Processing Time 0.032 seconds

Concave surface curvature effect on heat transfer from a turbulent round impinging jet (오목표면곡률이 난류원형충돌제트의 열전달에 미치는영향)

  • Im, Gyeong-Bin;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • The effects of concave hemispherical surface curvature on the local heat transfer from a turbulent round impinging jet were experimentally investigated. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds number ranges from Re=11,000 to 50,000, the nozzle-to- surface distance from L/d=2 to 10, and the surface curvature from D/d=6 to 12.The present results are also compared to those for the flat plate case. In the experiment, the local Nusselt numbers tend to increase in all regions with an increasing surface curvature. The maximum Nusselt number for all Reynolds numbers occurred at L/d .ident. 6 and a second maximum in the Nusselt number occurred at R/d .ident. 2 for both Re=23,000 and Re=50,000 in the case of L/d=2 and for Re=50,000 only in the case of L/d=4. Meanwhile, as the surface curvature increases, the value of the secondary maximum Nusselt number decreases. All the other cases exhibit monotonically decreasing values of the Nusselt number along the curved surface. The stagnation point Nusselt numbers are well correlated with Re, L/d, and D/d.

Growth and Optical Properties for $CdGa_2Se_4$ epilayer by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 박막 성장과 광학적 특성)

  • Hong, Myoung-Seok;Hong, Kwamg-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.125-126
    • /
    • 2006
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$. $345cm^2/V{\cdot}s$ at 293 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ},X$) having very strong peak intensity. Then. the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule. an activation energy of impurity was 137 meV.

  • PDF

The effect of thermal annealing and growth of $AgInS_2$/GaAs single crystal thin film by hot wal epitaxy (Hot wall Epitaxy(HWE)법에 의한 $AgInS_2$단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.274-284
    • /
    • 2001
  • A stoichimetric mixture of evaporating materials for $AgInS_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $AgInS_2$mixed crystal was deposited on thorughly etched semi-insulating GaAs(100) substrate by the Hot wall Epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of $AgInS_2$ single crystal the films measured from Hall effect by van der Pauw method are $9.35\times 10^{16}/\terxtm{cm}^3$ and $294\terxtm{cm}^2$/V.s at 293 K, respectively. From the optical absorption measurement the temperature dependence of the energy band gap on AgInS$_2$ single crystal thin film was found to be $E_g$(T)= 2.1365eV-($9.89\times 10^{-3}eV/T^2$/(2930+T). After the as-grown $AgInS_2$ single crystal thin films was annealed in $Ag^-S^-$ and In-atmospheres, the origin of point defects of AgInS$_2$ single crystal the films has been investigated by using the photoluminescence(PL) at 10K. The native defects of $V_{Ag},V_s, Ag_{int}$ and $S_{int}$ int/ obtained from PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $AgInS_2$ single crystal thin films to an optical p-type. Also, we confirmed that In in $AgInS_2$ /GaAs did not form the native defects because In is $AgInS_2$ single crystal thin films did exist in the form of stable bonds.

  • PDF

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Method Development for Estimating Concentration of Airborne Fungi Using a Thermal Imaging Camera (열화상 카메라를 이용한 공기 중 부유 진균 농도 추정방법 개발에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.465-471
    • /
    • 2015
  • Objectives: An objective of this study is to apply a thermal image camera which shows various color according to temperature of indoor surface for estimating concentration of airborne fungi. Materials and Methods: While wall temperature were monitored by applying the thermal image camera, airborne bacteria as well as air temperature and relative humidity have been measured in lecture room and toilet of university for seven months. Results: Based on the results obtained from this study, the ranges of temperature and airborne fungi concentration were $20{\sim}24^{\circ}C$ and $20{\sim}400cfu/m^3 $ for red image, $17.5{\sim}20^{\circ}C$ and $35{\sim}150cfu/m^3$ for orange image, $15.5{\sim}17.5^{\circ}C$ and $25{\sim}650cfu/m^3$ for sky-blue image, and $13.5{\sim}15.5^{\circ}C$ and $50{\sim}200cfu/m^3$ for blue image, respectively. The color of indoor surface taken shot by thermal image camera showed consistent trend with temperature of indoor surface. There is, however, little correlation between color of indoor surface and airborne fungi concentration(p>0.05). Among environmental factors, relative humidity in indoor air showed a significant relationship with airborne fungi concentration(p<0.05). Conclusions: The more measurement data for proving statistically an association between color of indoor surface and airborne fungi concentration should be provided to easily estimate indoor level of airborne fungi.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

Development of Thermocouple Sensor for Thermal Boundary Layer Measurement (온도 경계층 측정용 열전대 센서 개발)

  • Seo, Jongbeom;Han, S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.983-990
    • /
    • 2014
  • This research focused on designing an appropriate thermocouple sensor for a thermal boundary layer with a large temperature gradient. It was designed to minimize the conduction error from a constant temperature wall in a boundary layer. A $79.9-{\mu}m$ thermocouple was chosen, and a five-axis device jig was developed to fabricate a butt-welded thermocouple, which is different from arc-welded junction thermocouples. This was used to minimize the size of the thermocouple junction. In addition to fabricating butt-welded thermocouples, a thorough calibration was conducted to decrease the internal error of a multimeter to ensure that the data from the butt-welded and regular thermocouples were almost the same. Based on this method, a butt-welded thermocouple with a small junction was found to be suitable for measuring the temperature in a thermal boundary layer with very large thermal gradients. Using this thermal boundary layer probe, the thermal boundary layers in a turbine cascade were measured, and the Nusselt numbers were obtained for the turbine endwall.