• Title/Summary/Keyword: Wall plug efficiency

Search Result 12, Processing Time 0.043 seconds

The Study on the Mutual Characteristics Between Transmitting Efficiency of Pulse Energy and Wall Plug Consumed Power of Non-Thermal Plasma (저온 플라즈마의 펄스에너지 전송효율과 Wall Plug 소비전력과의 상호 특성에 관한 연구)

  • Jeong, Jong-Han;Jeong, Hyeon-Ju;Kim, Hwi-Yeong;Jeong, Yong-Ho;Song, Geum-Yeong;Kim, Geun-Yong;Kim, Hui-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.506-510
    • /
    • 2002
  • In this paper, we study on the mutual characteristics between transmitting efficiency of pulse energy and wall plug consumed power of non-thermal Plasma for removing environmental pollutive gas of coal plant. To obtain high pulse energy of our system, we used MPC(magnetic pulse compressor) of power switch and tested their characteristics by adjusting electrode length of reactor and charging voltage in capacitor. As a result, we obtained consumed power of wall plug and a compressed pulse of voltage 110kV, rising time 500ns. Impedance of load on increasing electrode length was decreased, but electrical efficiency was increased. These results indicate we can control critical voltage of pulse corona and electrical efficiency of economic cost in power plant.

Study on the Electrode Design for an Advanced Structure of Vertical LED (Via-hole 구조의 n-접합을 갖는 수직형 발광 다이오드 전극 설계에 관한 연구)

  • Park, Jun-Beom;Park, Hyung-Jo;Jeong, Tak;Kang, Sung-Ju;Ha, Jun-Seok;Leem, See-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, light emitting diodes (LEDs) have been studied to improve their efficiencies for the uses in various fields. Particularly in the aspect of chip structure, via hole type vertical LED chip is developed for improvement of light output power, and heat dissipations. However, current vertical type LEDs have still drawback, which is current concentration around the n-contact holes. In this research, to solve this phenomenon, we introduced isolation layer under n-contact electrodes. With this sub-electrode, even though the active area was decreased by about 2.7% compared with conventional via-hole type vertical LED, we could decrease the forward voltage by 0.2 V and wall-plug efficiency was improved approximately 4.2%. This is owing to uniform current flow through the area of n-contact.

Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor (벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구)

  • Park, Soo-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃

  • Ryu, Guen-Hwan;Seo, Dong-Joo;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.468-473
    • /
    • 2018
  • We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$. When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$, the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.

Epitaxial Structure Optimization for High Brightness InGaN Light Emitting Diodes by Using a Self-consistent Finite Element Method

  • Kim, Kyung-Soo;Yi, Jong Chang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.292-298
    • /
    • 2012
  • The epitaxial layer structures for blue InGaN light emitting diodes have been optimized for high brightness applications with the output power levels exceeding 1000 $W/cm^2$ by using a self-consistent finite element method. The light-current-voltage relationship has been directly estimated from the multiband Hamiltonian for wurtzite crystals. To analyze the efficiency droop at high injection levels, the major nonradiative recombination processes and carrier spillover have also been taken into account. The wall-plug efficiency at high injection levels up to several thousand $A/cm^2$ has been successfully evaluated for various epilayer structures facilitating optimization of the epitaxial structures for desired output power levels.

Analysis of Impingement Lands to Help Diesel Combustion Chamber Using Spray Impaction (분무충돌을 이용하는 디젤연소실 설계를 위한 충돌면 분석)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.24-32
    • /
    • 1996
  • Most of the research of small engines to date focused on developing spark ignition engines occupied much parts. Recently the number of a small direct injection diesel engine applied in small cars has been increased and considered as a next generation power source for passenger cars because of its high efficiency. Therefore the combustion chamber becomes smaller and the fuel injection pressure goes higher, which makes fuel sprays impinged easily on the combustion chamber walls. When strong swirls are not induced, the fuel may not mix with air because of fuel deposition on the wall. As a positive way, the combustion chamber systems which is using spray wall impaction has been introduced and assessed by an experimental or a simulate manner. In these systems the raised lands are positioned in tile chamber for spray impaction in order to break up the fuel drops into much smaller and direct them into desirable direction. This study addresses to the effects of rho position and size of the raised land or glow plug to help the chamber design using spray wall impaction. The characteristics of the spray impinged on various lands are investigated and compared with each other. Then the chamber shapes are discussed with the characteristics and their proper position and size is proposed in any chamber volume.

  • PDF

The Effect of Gas Compositions on the Energy Efficiency and NO Conversion in the Dielectric Barrier Discharge Process (유전체 장벽 방전 공정 내에서 가스 조성이 에너지 전달 효율과 NO 전환에 미치는 영향)

  • 이용환;고경보;최유리;길영미;조무현;남궁원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.393-394
    • /
    • 2003
  • 최근 들어 질소산화물 (NOx)을 저온 플라즈마로 처리하려는 연구가 활발하게 이루어지고 있다. 플라즈마 공정의 단점 중 하나는 다른 공정에 비해 비교적 에너지 소모가 높다는 것인데, 전원 (wall plug)에서 나오는 전력 중 일부만이 플라즈마를 발생시키는데 이용되어, 에너지 효율이 낮은 것으로 보고되고있다. 따라서 플라즈마 공정을 실제 공정에 적용하기 위해 선결되어야할 과제는 에너지 효율을 높이는 것이다. 이러한 에너지 효율은 가스의 조성과 인가 전압 등에 많은 영향을 받는다. 본 연구에서는 교류 유전체 장벽 방전 (Dielectric Barrier Discharge)의 가스 조성과 인가 전압을 변화시키면서 전원에서 반응기로 전달되는 에너지 전달 효율을 살펴보았으며, 에너지 전달효율과 NO의 전환이 상관관계를 살펴보았다. (중략)

  • PDF

Technical Trends of Mid-infrared Sources (중적외선 광원 기술동향)

  • Kim, K.S.;Kim, D.C.;Kim, S.B.;Leem, Y.A.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.14-21
    • /
    • 2014
  • 중적외선 파장 영역대는 환경, 산업, 안전, 군수, 의료 등 다양한 분야에 걸쳐 넓은 응용성을 가지고 있다. 하지만, 중적외선 영역대의 광원은 기술개발의 어려움으로 인해 관련 산업이 크게 발달하지 못한 측면이 있다. 최근 들어 광원기술의 급속한 발전은 새로운 산업군 형성에 대한 기대를 증폭시키고 있다. 특히 중적외선 광원 중 가장 비약적인 발전을 이루고 있는 중적외선 QCL(Quantum Cascade Laser)은 미국의 Bell 연구소에서 1994년 처음으로 레이저 펄스 발진을 시현한 이후, 현재는 100mW 정도의 높은 광 세기를 갖는 소자가 제작되어 발표된 바 있고, 상온 연속 발진으로 20%의 WPE(Wall Plug Efficiency)를 갖는 소자가 제작되었다는 보고 또한 이루어지기도 하였다. 본고에서는 이처럼 급속하게 진행되고 있는 중적외선 레이저를 포함한 중적외선 광원의 기술동향과 아울러 태동하고 있는 중적외선 광원의 시장동향과 향후 전망에 대해 기술한다.

  • PDF