• Title/Summary/Keyword: Wall model test

Search Result 590, Processing Time 0.03 seconds

UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS (폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구)

  • Kang Seung-Hee;Kwon Oh Joon;Hong Seung-Kyu
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Behavior of the Ground under a Building due to Adjacent Ground Excavation (근접굴착시 건물 하부 지반의 거동)

  • Lee, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.49-55
    • /
    • 2018
  • A pre-load of bracing was imposed to prevent the horizontal displacement on the strut of the braced wall adjacent to the building during the ground excavation. For this purpose, large scale model tests were conducted, without and with pre-load on braced wall. Adjacent building load was also imposed in different locations, that were 0 m, 1D, 2D on ground surface. In this study, model tests in 1:10 scale were performed in real construction sequences, and adjacent building was 12 m in width and the size of model test pit was 2 m in width, 6 m in height, and 4 m in length. As a result, it was found that the stability of the existing building adjacent to the braced wall within Rankine's active zone could be greatly enhanced when the horizontal displacement of the braced wall was reduced by applying a pre-load. which was larger than the designated axial force on the strut of the braced wall.

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

New Wall Impaction Model for Diesel Spray (디젤분무의 새로운 벽면충돌모델)

  • Park K.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.80-88
    • /
    • 1997
  • A new wall impaction model for diesel spray is described in this paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach. The droplet parcel contains many thousands of drops assumed to have the same size, temperature and velocity components. The droplet parcel equations of trajectory, momentum, mass and energy are written in Lagrangian form. The new drop-wall interaction model is proposed, which is based on experimental investigations on individual drops, and it is applied for the general non-orthogonal grid. The model is then assessed through comparison with experiments over a wide range of test conditions of sprays. The results are in good agreement with experimental data.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details (특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 내진성능평가)

  • Oh, Hae Cheol;Lee, Kihak;Chun, Young Soo;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2014
  • This research presents the nonlinear analysis model for reinforced concrete shear wall systems with special boundary elements as proposed by the Korean Building Code (KBC, 2009). In order to verify the analysis model, analytical results were compared with the experimental results obtained from previous studies. Established analytical model was used to perform nonlinear static and dynamic analyses. Analytical results showed that the semi-special shear wall improved significantly the performance in terms of ductility and energy dissipation as expected based on previous test results. Furthermore, nonlinear incremental dynamic analysis was performed using 20 ground motions. Based on computer analytical results, the ordinary shear wall, special shear wall and newly proposed semi-special shear wall systems were evaluated based on the methods in FEMA P965. The results based on the probabilistic approaches accounting for inherent uncertainties showed that the semi-special shear wall systems provide a high capacity/demand (ACMR) ratio owing to their details, which provide enough capacity to sustain large inelastic deformations.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Correlation of Experimental and Analytical Inelastic Responses of A 1:12 Scale 10-Story Reinforced Concrete Frame-Wall Structure (1:12축소 10층 철근콘크리트 골조-벽식 구조의 비선형 거동에 대한 실험과 해석의 상관성)

  • 이한선;김상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2000
  • Reinforced concrete structural walls are widely known to provide an efficient lateral load resistance and drift control. However, many reported researches on them are mostly limited to the RC structural walls reinforced according to seismic details. When the pushover analysis technique is used for the prediction of inelastic behavior of frame-wall structures for the seismic evaluation of existing buildings having non-seismic details, the reliability of this analysis method should be checked by the test results. The objective of this study is to verify the correlation between the experimental and analytical responses of a high-rise reinforced concrete frame-wall structure having non-seismic details by using DRAIN-2DX program[11] and the test results performed previously[1]. It is concluded that the behavior of the frame-wall model is mainly affected by the fixed-end rotation(uplift at base) and bending deformation of the wall and that the analysis with the LINKS model[10] in DRAIN-2DX describes them with good reliability.

Experimental Studies on Scramjet Tested in a Freejet Facility

  • Chang, Xinyu;Chen, Lihong;Gu, Hongbin;Yu, Gong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.34-40
    • /
    • 2004
  • Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5㎫ and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

  • PDF

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Simulation of the Thermal Performance on an Ondol House with Hot Water Heating in Consideration of Radiation Heat Transfer (복사열전달을 고려한 모형 온수온돌 주택 열성능 시뮬레이션)

  • Choi, Y.D.;Yoon, J.H.;Hong, J.K.;Lee, N.H.;Kang, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.295-305
    • /
    • 1993
  • Thermal performance of test cell of model hot water Ondol house was simulated by equivalence heat resistence and heat capacity method. In this method wall was replaced by two equivalence and one heat capacity. This method enables to simulate the variation of temperature of each element of model house. The effect of pipe diameter, pitch of pipe and with or without consideration of inter-radiation between wall surfaces on the energy consumption rate were investgated. Results show that radiations between the ground surface of room and wall surfaces contribute to the heating of room air by reducing the convection heat loss through the wall surfaces.

  • PDF