• Title/Summary/Keyword: Wall jet region

Search Result 83, Processing Time 0.024 seconds

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

Heat Transfer Characteristics of a Pulsating Impinging Jet (맥동충돌제트의 열전달 특성)

  • Lee, Eun-Hyun;Lee, Dae-Hee;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.903-910
    • /
    • 2002
  • The present study aims to investigate the heat transfer characteristics of a pulsating axisymmetric air jet impinging on a heated wall. An axisymmetric contraction nozzle is used to obtain uniform profiles for the mean velocity and turbulence intensity at the nozzle exit. Measurements of the time averaged temperature on the impingement surface are conducted using a Thermochrornatic Liquid Crystal(TLC) technique for steady and pulsating jets at the jet Reynolds numbers of 20000, 30000 and 40000. Considered are pulsation frequencies of 10 and 20 Hz, corresponding to Strouhal numbers below 0.06 based on nozzle width and jet discharge velocity. In addition, the effect of nozzle-to-plate distances in the range of 2 to 10 on heat transfer characteristics is assessed. The pulsating impinging jet provides more uniform heat transfer coefficient near the impingement region, irrespective of H/D. Based on the measured data, a good correlation as a function of the jet Reynolds and Nusselt numbers is reported. It is also found that an exponent m in the relation of Nu ${\propto}\;Re^m$ depends on both r/D and H/D, by which the impinging jet flows are highly affected.

Jet Impingement Heat Transfer on a Cylindrical Pedestal Encountered in Chip Cooling (충돌제트를 이용한 Pedestal 형상의 칩 냉각연구)

  • Lee, Dae-Hee;Lee, Joon-Sik;Chung, Young-Suk;Chung, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The heat transfer and flow measurements on a cylindrical pedestal mounted on a flat surface with a turbulent impinging jet were made. The experiments were made for the jet Reynolds number of Re = 23,000, the dimensionless nozzle-to-surface distance of L/d = 2~10, the dimensionless pedestal height of H/D = 0~1.5. Measurements of the surface temperature and the Nusselt number distributions on the plate surface were made using liquid crystal and shroud-transient technique. Flow measurements involve smoke flow visualization and the wall pressure coefficient. The results show that the wall pressure coefficient sharply decreases along the upper surface of the pedestal. However, the pressure increases when the fluid escapes from the pedestal and then collides on the plate surface. The secondary maxima in the Nusselt numbers occur in the region of 1.0 $\leq$ r/d $\leq$ 1.9. Their values for the case of H/D = 0.5 are maximum 80% higher than those for other cases. The formation of the secondary maxima may be attributed to the reattachment of flow on the plate surface which was separated at the edge of the pedestal.

Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct (스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Chun, Ho-Hwan;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.

Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments (고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성)

  • Im, Gyeong-Hun;Lee, Bong-Su;Kim, Jong-Hyeon;Gu, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet (오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구)

  • Lim, K.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

Local heat transfer measurement from a concave surface to an oblique impinging jet (오목한 표면위에 분사되는 경사충돌제트에 대한 국소열전달계수의 측정)

  • 임경빈;김학주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.324-333
    • /
    • 1998
  • Measurements of the local heat transfer coefficients on a hemispherically concave surface with a round oblique impinging jet were made. The liquid crystal transient method was used for these measurements. This method, which is a variation of the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23,000 and the nozzle -to -jet distance was L/d=2, 4, 6, 8 and 10 and the jet angle was $\alpha$=0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$and 40$^{\circ}$. In the experiment, the maximum Nusselt number at all region occurred at L/d(equation omitted)6 and Nusselt number decreases as the inclined jet angle increases. For the normal jet the contours of constant Nusselt number are circular and as the jet is inclined closer and closer to the surface the contours become elliptical shape. The decreasing rate of the Nusselt number at X/d> 0(upstream) on a surface curvature are higher than those on a flate plate and the decreasing rate of the Nusselt number at X/d <0(downstream) on a surface curvature are lower than those on a flate plate. And also, the decreasing rate of local Nusselt number distribution at X/d <0(upstream) exhibit lower than with X/d <0(downstream) as jet angle increases. The second maximum Nusselt number occurred at long distance from stagnation point as jet angle increases.

  • PDF