• 제목/요약/키워드: Wall friction

검색결과 503건 처리시간 0.029초

HVOF 용사총의 기체역학에 관한 연구 (A Study of Gas Dynamics of the High-Velocity Oxy-Fuel Thermal Spray Gun)

  • 조필재;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.574-579
    • /
    • 2003
  • The present study addresses an analytical investigation to understand the characteristics of gas flow in the High-Velocity Oxy-Fuel(HVOF) thermal spray gun. One-dimensional analysis is extended to involve the effects of the wall friction and powder particle diameter. From the present analysis it is well known that the flow characteristics inside and outside the thermal spray gun is varied depending on the combustion chamber pressure. The thermal spray gun flow is characterized by six different patterns. The powder particle size and wall friction significantly influence the powder particle velocity. The particle velocity decreases with an increase in the powder particle size. This implies that the combustion chamber pressure should be increased to achieve a higher velocity of the powder particle.

  • PDF

엇갈린 래버린스 실의 누설량 및 동특성 해석 (Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal)

  • 하태웅
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Heat Transfer and Friction in Rectangular Convergent Channels with Ribs on One Wall

  • Kim, Won-Cheol;Lee, Myung-Sung;Bae, Sung-Taek;Ahn, Soo-Whan
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.12-18
    • /
    • 2014
  • The local heat transfer of developed turbulent flows in the stationary ribbed rectangular convergent channels has been investigated experimentally. The rectangular convergent channels with one ribbed surface only have the inclination of $0.72^{\circ}$ and $1.43^{\circ}$ at which the ribbed wall is manufactured with a fixed rib height (e) of 10 mm and the ratio of rib spacing (p) to height (e) =10. The measurement was conducted within the range of Reynolds numbers from 15,000 to 89,000. The local heat transfer characteristics of the rectangular convergent channels are quite different from those of the ribbed square straight channel.

도로터널 환기시스템 개발연구 (Development of Vehicle Tunnel Ventilation System)

  • 이창우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

The Effect of Buoyancy Orientation on Flow Structures in Turbulent Channel Flow using DNS

  • El-Samni Osama;Yoon HyunSik;Chun Ho Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제9권4호
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.

INFLUENCE OF HALL CURRENT AND HEAT SOURCE ON MHD FLOW OF A ROTATING FLUID IN A PARALLEL POROUS PLATE CHANNEL

  • VENKATESWARLU, M.;UPENDER REDDY, G.;VENKATA LAKSHMI, D.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.217-239
    • /
    • 2018
  • This paper examined the MHD and thermal behavior of unsteady mixed convection flow of a rotating fluid in a porous parallel plate channel in the presence of Hall current and heat source. The exact solutions of the concentration, energy and momentum equations are obtained. The influence of each governing parameter on non dimensional velocity, temperature, concentration, skin friction coefficient, rate of heat transfer and rate of mass transfer at the porous parallel plate channel surfaces is discussed. During the course of numerical computation, it is observed that as Hall current parameter and Soret number at the porous channel surfaces increases, the primary and secondary velocity profiles are increases while the primary and secondary skin friction coefficients are increases at the cold wall and decreases at the heated wall. In particular, it is noticed that a reverse trend in case of heat source parameter.

콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능 (Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys)

  • 이정영;김승원;김두기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

자동차 수동 클러치 유압 실린더의 마찰 특성 (Friction Characteristics of an Hydraulic Cylinder for an Automotive Manual Clutch)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.32-38
    • /
    • 2006
  • A clutch hydraulic system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch mechanism. The foot effort when the clutch pedal is pushed is different than that when the clutch is returned. The effort or load difference, called hysteresis, is caused by the friction produced between rubber seal and inner wall inside the hydraulic cylinder. This clutch pedal travel foot effort hysteresis is essential for a clutch hydraulic system design and analysis. The dynamic model for a clutch hydraulic system is developed and a simulation analysis is performed to estimate the fiction coefficient as a function of the cylinder pressure. The simulation result is then compared to the measurements obtained from a clutch hydraulic system tester to ensure the reliability of the dynamic model and the coefficients estimated. Also the estimated friction coefficients at various pressure values are compared to those reported by an independent study.

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.