• 제목/요약/키워드: Wall Jet

검색결과 361건 처리시간 0.029초

하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구 (Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod)

  • 표창기;박상록;김동춘;금성민;임장순
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

맥동충돌제트의 열전달 특성 (Heat Transfer Characteristics of a Pulsating Impinging Jet)

  • 이은현;이대희;이준식
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.903-910
    • /
    • 2002
  • The present study aims to investigate the heat transfer characteristics of a pulsating axisymmetric air jet impinging on a heated wall. An axisymmetric contraction nozzle is used to obtain uniform profiles for the mean velocity and turbulence intensity at the nozzle exit. Measurements of the time averaged temperature on the impingement surface are conducted using a Thermochrornatic Liquid Crystal(TLC) technique for steady and pulsating jets at the jet Reynolds numbers of 20000, 30000 and 40000. Considered are pulsation frequencies of 10 and 20 Hz, corresponding to Strouhal numbers below 0.06 based on nozzle width and jet discharge velocity. In addition, the effect of nozzle-to-plate distances in the range of 2 to 10 on heat transfer characteristics is assessed. The pulsating impinging jet provides more uniform heat transfer coefficient near the impingement region, irrespective of H/D. Based on the measured data, a good correlation as a function of the jet Reynolds and Nusselt numbers is reported. It is also found that an exponent m in the relation of Nu ${\propto}\;Re^m$ depends on both r/D and H/D, by which the impinging jet flows are highly affected.

Jet A-1 연료의 열전달 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Jet A-1 Fuel)

  • 이준서;이봄;안규복
    • 한국추진공학회지
    • /
    • 제24권5호
    • /
    • pp.1-12
    • /
    • 2020
  • 본 논문에서는 재생냉각 연소기에서 냉각제 및 연료로 사용되는 Jet A-1의 열전달 특성에 대해 실험적으로 연구하였다. 냉각채널 가열을 위한 인가 전류, 모사 시편 지름, 시편 후단 압력, Jet A-1 유속을 변화시키며, 시편에서의 벽면 온도 및 시편 전/후단에서의 Jet A-1 온도를 측정하였다. 시편 지름과 유속이 열전달 특성에 중요한 인자임을 알 수 있었으며, 시편의 후단 압력은 열전달 성능에 영향을 주지 않음을 확인할 수 있었다. 열전달 실험결과는 기존 Nu수 경험식들과 비교하였으며, 최종적으로 새로운 Nu수 경험식을 도출하였다.

적외선 카메라를 이용한 압축성 고속 충돌 제트에서의 단열 벽면 온도 특성 연구 (Measurement of Adiabatic Wall Temperature in Compressible High Speed Impinging jets using Infra-red Camera)

  • 김범석;신상우;유만선;조형희;이장우;배주찬
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.714-719
    • /
    • 2007
  • 본 연구에서는 적외선(Infra-Red) 카메라를 이용하여 원형 노즐을 통한 고속 제트 분사 시 수직 충돌 벽면에서 나타나는 정상상태(steady state)의 단열 벽면 온도를 2차원적으로 측정하였다. 출구 노즐 직경으로 표현된, Reynolds 수 187,000에서 노즐-평판간 거리 변화의 영향을 살펴보았으며, 측정된 단열 벽 온도는 회복 계수로 무차원화 하였다. 한편 열전대를 이용하여 측정한 단열 벽면 온도를 적외선 카메라를 이용한 측정 결과와 비교하여 검증하였다.

평면 난류 오프셋 제트에 관한 연구 (A Study on the Plane Turbulent Offset Jet)

  • 유정열;강신형;채승기;좌성훈
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.357-366
    • /
    • 1986
  • 본 연구에서는 3공피토우관 및 열선유속계를 사용하여 벽에 평행한 2차원 난류제트의 난류량들을 측정하였고, 스캐니 밸브를 이용하여 벽면아력분포를 측정함 으로써 재순환 영역을 포함한 전체유동장에서의 유동특성을 고찰하였다. 또한 잘 알려진 표준 k-.epsilon. 난류모형 및 유선곡률을 고려한 수정된 k-.epsilon. 난류모형을 이용하여 측정 수치해석을 수행하였다.

450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究 (An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet)

  • 노병준;김장권
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.442-449
    • /
    • 1984
  • 본 연구에서는 두 분류가 교우되어 배합이 이루어지는 유동역에서 3차원 방향 에 대하여 평균속도분포, 난류강도분포, 난류전단응력분포, 상관계수의 분포 및 난류 운동에너지와 운동량의 변화 등을 측정 분석하였다.

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

피스톤 냉각용 Oil jet 유동해석 (NUMERICAL ANALYSIS ON INTERNAL FLOW OF OIL JET COOLING THE PISTON)

  • 권지혁;정호윤;이종훈;최윤환;이연원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.219-222
    • /
    • 2005
  • Recently, the interest of the engine capacity and environment of the atmosphere is increasing, so the researches for the engine capacity have been conducted for a long time. But the internal environment of an automotive engine is very severe. A piston is exposed to combustion gas of over $2000^{\circ}C$ and strong friction is occurred by high speed motion in the cylinder. The fraction between piston and wall of the cylinder causes the increase of temperature in the engine. The temperature of the engine has an effect on the engine capacity. If the temperature is high, the capacity of the engine is low. So we have to maintain the optimum temperature. To maintain the optimum temperature, the enough flow rate of the engine oil is needed. The oil jet is used to control the flow rate of the engine oil and supply the engine oil to the piston and cylinder. The purpose of this study is to check the mass flow rate of the engine oil and the characteristics of internal flow of the oil jet. Flow pattern of the engine oil is very important because it concludes the loss in the oil jet. This study is the previous research about the oil jet and we will consider the movement of the ball check valve to get more accuracy result.

  • PDF

반복된 제트 충돌을 갖는 내부 유로의 평균 열전달 계수 측정 (Heat transfer coefficient measurement in the Blockage channel with Repeated Jet Impingement)

  • 박승덕;이기선;김석범;조용화;전창수;곽재수;허재성
    • 항공우주시스템공학회지
    • /
    • 제2권4호
    • /
    • pp.7-12
    • /
    • 2008
  • Averaged heat transfer coefficients were measured in a turbine blade internal cooling passage model with three blockage walls. Each blockage wall was equipped with 9 staggered holes or slots in order to create different shaper of repeated jet impingement. The effect of jet shape on the averaged heat transfer coefficient was studied by the copper-thermocouple method and three Reynolds number of 10,000, 20,000, and 30,000 were tested. Results showed that the repeated stagger jets could increase the averaged heat transfer coefficient by at least 9 times compared to the smooth channel cases. Due to the large pressure drop induced by the repeated jet impingement, the thermal performance was less than 1 for all cases and decreased as the Reynolds number increased. Among the tested cases, the widest slot showed the best thermal performance. The measurement results showed that the thermal performance of the heat transfer augmentation by repeated stagger jets could be improved by altering the jet shape, and other shape of impingement jet will be studied in near future.

  • PDF