• Title/Summary/Keyword: Wall Interference

Search Result 87, Processing Time 0.02 seconds

Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구)

  • Gang, Seung-Hui;Gwon, O-Jun;An, Seung-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.67-74
    • /
    • 2006
  • An unsteady blockage-correction method utilizing wall pressure distribution on the test section has been developed for the wall interference correction of a closed test-section subsonic wind tunnel. The pressure distribution along the test section wall was decomposed into Fourier series and a quasi-steady method based on a measured-boundary-condition method was applied to each Fourier coefficient. The unsteady correction for a complete test period was accomplished by recombining each corrected terms. The present method was validated by appling computed unsteady flows over a cylinder and an oscillating airfoil in the test sections. The corrected results by the present method agreed well with free-air condition.

A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test (풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구)

  • Kim, Junemo;Lee, Yeongbin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

Use of CFD For Design Validation of A Transonic Civil Transport

  • Ok, Honam;Kim, Insun;Choi, Seong-Wook;Sung, Bongzoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • The applications of CFD in the design process of a transonic civil transport at Korea Aerospace Research Institute (KARI) are outlined. Three Navier-Stokes solvers, developed at KARI with different grid approaches, are used to predict the aerodynamic coefficients and solve the flowfield of various configurations. Multi-block, Chimera, and unstructured grids are the approaches implemented. The accuracy of the codes is verified for the transonic flow about RAE wing/fuselage configuration. The multi-block code is used to provide the detailed data on the flowfield around a wall interference model with different test section sizes which will be used in establishing the wall interference correction method. The subsonic and transonic flowfields about K100-04A, one of the configurations of a 100-seater transport developed by KARI and Korea Commercial Aircraft Development Consortium (KCDC), are computed to predict the aerodynamic coefficients. The results for the subsonic flow are compared with those of wind tunnel test, and the agreement is found to be excellent. The interference effect of nacelle installation on the wing of K100-04A is also investigated using the unstructured grid method, and about 10% reduction in wing lift is observed. The accuracy of the three developed codes is verified, and they are used as an efficient tool in the design process of a transonic transport.

  • PDF

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.

Control of Plume Interference Effects on a Missile Body Using a Porous Extension (다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어)

  • Young-Ki Lee;Heuy-Dong Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.33-38
    • /
    • 2003
  • The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

Prediction of the Individual Reentering Rate of a Cooling Tower within it'S Bank Installed on Building Roof (옥상설치 냉각탑에서의 토출공기 재유입량 예측)

  • Moon, Sun-Ae;Heo, Jin-Hyuk;Choi, Choong-Hyun;Yi, Kang-Soon;Lee, Jae-Heon;Yoo, Ho-Seon;Lee, Tae-Gu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.445-450
    • /
    • 2005
  • In this paper, the individual reentering rate of the cooling towers installed on a building roof is investigated considering the wind direction and louver wall installation. As the western wind with 5 m/s flows and the louver wall is not installed around the roof. the reentering rate of the cooling towers is predicted about 20%. However the reentering rate is simulated about 5% when the louver wall is installed around the roof. As the southern wind with 5 m/s flows and the louver wall is not installed, the reentering rate of the cooling tower is predicted about 30%.On the contrary, the reentering rate is simulated about 15% when the louver is installed. As a result, if there is no louver wall installed around the roof, the falloff of the cooling capacity would be serious by the reentering of the discharge air. The installation of the louver wall is strongly recommended to prevent the discharge air reentering.

  • PDF