• Title/Summary/Keyword: Wall Impaction Model

Search Result 13, Processing Time 0.018 seconds

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).