• Title/Summary/Keyword: Walking-Beam Reheating Furnace Model

Search Result 3, Processing Time 0.016 seconds

Fuzzy Logic Modeling and Its Application to A Walking-Beam Reheating Furnace

  • Zhang, Bin;Wang, Jing-Cheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2007
  • A fuzzy modeling method is proposed to build the dynamic model of a walking-beam reheating furnace from the recorded data. In the proposed method, the number of membership function on each variable is increased individually and the modeling accuracy is evaluated iteratively. When the modeling accuracy is satisfied, the membership functions on each variable are fixed and the structure of fuzzy model is determined. Because the training data is limited, in this process, as the number of membership function increase, it is highly possible that some rules are missing, i.e., no data in the training set corresponds to the consequent part of a missing rule. To complete the rulebase, the output of the model constructed at the previous step is used to generate the consequent part of the missing rules. Finally, in the real time application, a rolling update scheme to rulebase is introduced to compensate the change of system dynamics and fine tune the rulebase. The proposed method is verified by the application to the modeling of a reheating furnace.

A Numerical Study on the Slab Heating Characteristics in a Reheating Furnace with the Formation and Growth of Scale on the Slab Surface (스케일 층의 생성 및 성장을 고려한 가열로 내 슬랩의 승온 특성 해석에 관한 연구)

  • Lee, Dong-Eun;Jang, Jung-Hyun;Kim, Chong-Min;Hong, Dong-Jin;Park, Hae-Doo;Park, Yun-Beom;Kim, Man-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.109-112
    • /
    • 2008
  • In this work, a mathematical heat transfer model of a walking-beam type reheating furnace that can predict the formation and growth of the scale layer, which is produced due to oxidative reaction between the furnace oxidizing atmosphere and the steel surface in the reheating furnace, has been developed. The model can also predict the heat flux distribution within the furnace and the temperature distribution in the slab and scale throughout the reheating furnace process by considering the heat exchange between the slab and its surroundings in the furnace, including radiant heat transfer among the slabs, the skids, the hot gases and the furnace wall as well as the gas convection heat transfer in the furnace. Using the model developed in this work, the effects of the scale layer on the heat transfer characteristics and temperature behavior of the slab is investigated. A comparison is also made between the predictions of the present model and the data from an in situ measurement in the furnace, and a reasonable agreement is founded.

  • PDF

The Comparative Analysis of Numerical and Experimental Results for Prediction of Workpiece Temperature in the Commercial Reheating Furnace (상용급 재가열로에서 소재 온도 예측을 위한 해석과 실험 결과의 비교 분석)

  • Lee, Chunsik;Lee, Jae Yong;Ryu, BoHyun;Rhim, DongRyul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • Specially designed test material was used for workpiece temperature measurement in the commercial reheating furnace and a linearized thermal model was applied for real time temperature prediction. The applied furnace is a walking beam type and specification of the workpiece is a STS302 which is 160mm in width, 160mm in height and 8100mm in length. Also six thermocouples were installed in width, height and length direction for temperature measurement. Ambient temperature in the furnace was raised to 1265 Celsius degrees and it took about 2.5 hours from loading to discharging of the workpiece. As a result of the experiment, temperature of the workpiece at discharge was 1257 Celsius degrees on the average in the range of 1256 to 1259 Celsius degrees, and predicted average temperature through the thermal model was 1251 Celsius degrees. Therefore, the deviation of the analysis and test results is about 6 degrees, which is within the range of 10 degrees required by the industry.