• Title/Summary/Keyword: Walking stability

Search Result 331, Processing Time 0.027 seconds

Gait Implementation of Biped Walking Robot(IWR-III) for continuous trunk motion (이족보행로봇(IWR-III)의 지속적인 몸체 추진을 위한 걸음새 구현)

  • Jang, Chung-Ryoul;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.549-551
    • /
    • 1998
  • This paper deals with the new gait implementation of biped walking robot(IWR-III). In the case of using old gait. The trunk should be stopped during the phase changing time. But using new gait, the trunk moves continuously for all walking time. As a result, IWR-III has a walking gait similar to human being, and the motion of balancing joints can be reduced by the trunk ahead effect in the double support phase, moreover, ZMP tracking is improved, therefore the stability of IWR-III is improved. The trajectory is planned with a 5th order spline interpolation and stability of IWR-III is certified with a biped simulator.

  • PDF

Intelligent walking of a biped robot using soft-computing method (소프트 컴퓨팅 기법을 이용한 이족 로봇의 지능적 보행)

  • Lee, Seon-Gu;Song, Hee-Jun;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.312-314
    • /
    • 2006
  • Researches on biped robot walking have been mostly focusing on walking on even surfaces. Therefore, robot walking has been only realized on pre-specified spaces with pre-specified movements according to the previous researches. In this paper a walking system for a biped robot using fuzzy system and neural networks to overcome those constraints. The system enables biped walking to be possible in various environments and with more complicated obstacels. For the purpose, a walking robot should recognize its surrounding environment and determine its movement. In the proposed system, a robot dynamically generates its walking trajectories of each joint by using neural networks when facing new obstacle such as stairs, and it maintains its walking stability by using closed loop fuzzy control system which manipulates the waist joints.

  • PDF

The Energy Efficiency of Walking Method for Quadruped Walking Robot (4 족 보행로봇의 보행방법에 대한 에너지효율)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.882-887
    • /
    • 2008
  • In this paper, the dependency of energy efficiency on the walking/running pattern and the walking/running period is analyzed though simulations of walk, trot and gallop. A quadruped animal has its own original features in the walking pattern and the walking period for adaptation to the environment. The robot model used in the simulations has three active joints and one passive spring-loaded joint at each leg, which is based on the actual quadruped robot, HUNTER (Hanyang UNiversity TEtrapod Robot), developed in the lab. Also included is the dependency of energy efficiency on the walking period in trot.

  • PDF

The Effect of Treadmill Gait Training in an Adjusted Position from Functional Training System on Chronic Stroke Patients' Walking and Balance Ability (기능적 훈련 시스템을 이용한 조절된 자세에서의 트레드밀 보행훈련이 만성 뇌졸중 환자의 보행 기능과 균형에 미치는 효과)

  • Park, Ji-Eung;Lee, Jun-Ho;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • PURPOSE: The purpose of this study was to examine the effects of treadmill gait training in an adjusted position from the functional training system on the gait and balance of chronic stroke patients. METHODS: Thirty chronic stroke patients were randomly assigned to either the experimental group, who received treadmill gait training in an adjusted position, or the control group, who received regular treadmill gait training. Both groups underwent a 30-minute comprehensive rehabilitation treatment before receiving an additional 20-minute treadmill gait training. This routine was repeated five times a week for four weeks. To measure the difference before and after training in walking and balance, patients were scored on the following: 10 m walking test (10 MWT), 6 minute walking distance (6 MWD), timed up and go test (TUG), and static standing balance test (stability index). RESULTS: While post-training scores of 10 MWT, 6 MWD, TUG, and stability index for both groups increased significantly compared with pre-training (p<.05), the experimental group showed greater improvement than the control group (p<.05). The scores of the experimental group increased significantly by 9% in the 10 MWT, 11% in 6 MWD, 13% in the TUG, 8% in the stability Index (eye opened), and 10% in the stability index (eye closed). CONCLUSION: Treadmill gait training in an adjusted position from the functional training system would be a useful gait training method to improve walking and balance of chronic stroke patients.

Lower Extremities' Joint Stability during the Elderly Woman's Walking

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • Objective: The aim of this study was to investigate the periodicity of the lower extremity joint flexion/extension angle to compare the local stability between young and elderly women during walking on a treadmill. Method: Eighteen young women (mean $age=21.2{\pm}1.6y$; mean $mass=57.1{\pm}6.1kg$; mean $height=1.61{\pm}0.04m$) and 18 elderly women (mean $age=66.4{\pm}1.2y$; mean $mass=55.4{\pm}8.3kg$; mean $height=1.56{\pm}0.04m$) participated in this study. Approximate entropy (ApEn) was used to determine the periodicity in the lower limb joint angles. Results: The ApEn values of the two groups were statistically greater in the surrogate data test than in the original time series data (p<.05). The periodicity of the hip and ankle flexion/extension angles decreased in the elderly women group compared with the young women group (p<.05). The periodicity of the lower extremity joint flexion/extension angle showed that the ankle joint increased dominatingly in both groups (p<.05); the hip joint decreased compared with the knee joint in the young women group; and the knee joint decreased compared with the hip joint in the elderly women group (p<.05). Conclusion: These results suggest that the lower extremity joint flexion/extension angles of the young and elderly women during walking contained random noises as well as biological signals. In addition, the differences in the periodicity in the lower extremity joint between the young and elderly women may provide some insight in predicting potential falls and be used as a characteristic indicator for determining local stability in elderly women during walking.

The Studies on the Foot Stability and Kinesiology by Direction of Carry a Load during Gait (보행 시 부하의 위치에 따른 발의 안정성 및 운동학적 분석에 관한 연구)

  • Lee, Sang-Yeol;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • Purpose: This study examined how the direction of carrying a load affects the foot stability and kinesiology while walking. Methods: The heel rotation, Hallux stiffness, foot balance, metatarsal load, toe out angle, subtalar joint flexibility were measured in 40 adults (men and women) who carried a load back and forth, walking on a 2-meter-long board. The measurement was carried out three times and the mean of the measurements was used to compare the difference between the front, back and the condition without a load. Results: While walking, heel rotation and hallux stiffness occurred most when a front load was applied compared to a back load or no load condition (p<0.05). A metatarsal load also appeared to be the highest with the frond load, but there was no significant difference in the balance of the whole foot. Both the toe out angle and subtalar joint flexibility appeared to increase significantly (p<0.05). Conclusion: Applying the front load causes subtalar joint instability and increases the plantar foot pressure imbalance during walking.

  • PDF

Stability Analysis of a Biped Robot using Wrench System (렌치 시스템을 이용한 이족보행 로봇의 안정도 해석)

  • 임헌영;심재경;황규혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.648-651
    • /
    • 2004
  • Biped robot has better mobility than other mobile robot, but it is hard to maintain balance during walking. In order to maintain balance, stability analysis is a key point for a biped robot. The zero moment point analysis has been used most in stability analysis. In this paper, we propose different method of stability analysis using wrench system. It is possible to generate a wrench system by applying a force along an axis in space and simultaneously applying a moment about the same axis. Wrench system is equivalent to a force and moment applied along the same axis. We compare the result of wrench system analysis with that of zero moment analysis in biped robot stability using simulation program.

  • PDF

Gait Selection According to Trajectory Planning for Quadrupedal Walking Macine (4족 보행기의 경로계획에 따른 걸음걸이 선택)

  • 이종길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.151-155
    • /
    • 1996
  • In this paper, the continuous motion of a quadrupedal walking machine was studied. The motion planning which is able a walking machine body to precisely follow a three-dimensional curve was developed. A three-dimensional curve was designed based on Bezier curve and obstacle avoidance considerations. Due to the arbitrary motion direction during walking, special strategies of gaits were developed to ensure positive stability. The gait strategies were based on wave and wave-crab gait.

  • PDF

Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis (소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법)

  • Lee, Chang-Seok;Na, Doo-Young;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2010
  • In this paper we propose a low-power walking compensation method for biped robot based on consumption energy analysis. Firstly, basic walking motions that can reduce energy consumption of robot movements are implemented based on consumption energy analysis according to robot axes. We define knee bent motion as a basic walking motion. It can improve energy consumption and motion stability by lowering center of gravity of the biped robot. We analyze consumption energy of left and right leg of the robot using motor currents and propose a compensation method of walking motions to reduce unbalance of consumption energy between left leg and right leg. It can also improve energy consumption and walking stability of the robot. The proposed low-power compensation method based on consumption energy analysis is verified by walking experiments of a small biped robot with an embedded system.

Walking Motion Planning for Quadruped Pet Robot (4족 애완로봇을 위한 보행운동 계획)

  • Yi, Soo-Yeong;Choi, Dae-Sung;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • A motion planning algorithm is presented in this paper for a commercialized quadruped walking of robot pet. Stable walking is the basic requirement for a commercial-purpose legged robot. In order to secure the walking stability, modified body sway to the centroid of support polygon is addressed. By representation of walking motion with respect to the world coordinate system rather than body coordinate, it is possible to design the several gaits in unified fashion. The initial gait posture is introduced to maximize the stride and to achieve fast walking. The proposed walking motion planning is verified through computer simulation and experiments.