• Title/Summary/Keyword: Walking Robot

Search Result 617, Processing Time 0.025 seconds

A Study on the Environment Recognition System of Biped Robot for Stable Walking (안정적 보행을 위한 이족 로봇의 환경 인식 시스템 연구)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1977-1978
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tele-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Development of walking assistance robot for the blind (시각장애인을 위한 보행보조 로봇의 개발)

  • Kang, Jeong-Ho;Kim, Chang-Geol;Lee, Seung-Ha;Song, Byung-Seop
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • For safe walking of the people who are blind, walking assistance robot which can detecting and avoiding the obstacle was investigated. The implemented prototype walking assistance robot consists of a obstacle detecting module, a user interface using acoustic signal and a driving module. The obstacle detecting module uses 6 ultrasonic sensors those located at the front part of the robot can perceive the obstacle which is in 3 meter distances and $180^{\circ}$ degrees. It calculates the distance and degree from the obstacle using TOF (time of flight) method and decides the 3-dimensional location of the obstacle. The obstacle information is delivered to the user using acoustic alarm and guide sound. The robot is designed to avoid by itself when the obstacle is detecting and the user only follows it to safe walking. After the designed robot was implemented, driving and obstacle detecting experiments were carried out. The result showed that the designed walking assistance robot will help the people who are blind to walk around safe.

Development of a Bio-mimetic Quadruped Walking Robot with Waist Joint

  • Kim, Dong-Sik;Park, Se-Hoon;Kim, Kyung-Ho;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1530-1534
    • /
    • 2004
  • This paper presents a novel bio-mimetic quadruped walking robot with a waist joint, which connects the front and the rear parts of the body. The new robot, called ELIRO-1(Eating LIzard RObot version 1), can bend its body while the legs is transferred, thereby increasing the stride and speed of the robot. The waist-jointed walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. We design the mechanical structure of the robot, which is small and light to have high movability and high degree of human friendship. In this paper, we describe characteristics of the waist joint and leg mechanism as well as the analysis using ADAMS to select appropriate actuators. In addition, a hardware and software of the controller of ELIRO-1 are described.

  • PDF

Obstacle Avoidance and Playing Soccer in a Quadruped Walking Robot (4족 보행 로봇의 장애물 회피와 축구하기)

  • Seo, Hyeon-Se;Sung, Young Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • In this paper, we introduce an intelligent quadruped walking robot that can perform stable walking and a couple of intelligent behaviors. The developed robot has two sets of ultrasonic sensors and six sets of infrared sensors and can perform obstacle avoidance by detecting obstacles and estimating the distances and directions of those obstacles. The robot also has a stereo camera and can paly soccer by detecting a ball and estimating the 3 dimensional coordinates of the ball. In performing those intelligent behaviors, the robot needs to have the capability of generating its walking patterns, solving the inverse kinematics problem, and interfacing several sensors in realtime. Therefore we designed a hierarchical controller that consists of a main controller and an auxiliary controller. The main controller is a 32-bit DSP that can perform fast floating-point opertaion and the auxiliary one is a 8-bit micro-controller. We showed that the developed quadruped walking robot successfully perform those intelligent behaviors through experiments.

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

A Study on ZMP Improvement of Biped Walking Robot Using Neural Network and Tilting (신경회로망과 틸팅을 이용한 이족 보행로봇의 ZMP 개선 연구)

  • Kim, Byoung-Soo;Nam, Kyu-Min;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • Based on the stability criteria of ZMP (Zero Moment Point), this paper proposes an adjusting algorithm that modifies walking trajectory of a bipedal robot for stable walking by analyzing ZMP trajectory of it. In order to maintain walking balance of the bipedal robot, ZMP should be located within a supporting polygon that is determined by the foot supporting area with stability margin. Initially tilting imposed to the trajectory of the upper body is proposed to transfer ZMP of the given walking trajectory into the stable region for the minimum stability. A neural network method is also proposed for the stable walking trajectory of the biped robot. It uses backpropagation learning with angles and angular velocities of all joints with tilting to get the improved walking trajectory. By applying the optimized walking trajectory that is obtained with the neural network model, the ZMP trajectory of the bipedal robot is certainly located within a stable area of the supporting polygon. Experimental results show that the optimally learned trajectory with neural network gives more stability even though the tilting of the pelvic joint has a great role for walking stability.

Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어)

  • 신호철;강창회;정승호;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.

Biologically Inspired Approach for the Development of Quadruped Walking Robot (사족보행 로봇의 개발을 위한 생체모방적 접근)

  • Kang Tae-Hun;Song Hyun-Sup;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

A study on the ZMP Trajectory generation in multi step walking of IWR-III Biped Walking Robot (이족보형로봇의 전체 보행구간에서의 균형점 궤적 생성에 관한 연구)

  • Koo, Ja-Hyuk;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.546-548
    • /
    • 1998
  • This paper deals with ZMP trajectory generation in multi step walking of IWR-III(Inha Walking Robot) Biped Walking Robot. Biped walking is realized by combining 6-types of pre-defined steps and the actual ZMP can be used as a stability index of a robot. For the good tracking of actual ZMP, desired ZMP trajectory is generated during the whole walking time not for each step. Trajectory generation is performed considering velocities and accelerations of given via points using 5-th order polynomial interpolation method. As a result, balancing joints have a more smooth and continuous motion and actual ZMP has a better tracking ability. Numerical simulator is done by MATLAB to guarantee the walking of a robot satisfying the ZMP stability.

  • PDF

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.