• Title/Summary/Keyword: Walking Analysis

Search Result 1,383, Processing Time 0.026 seconds

Influence of Perceived Neighborhood Walking Environment on Satisfaction for the Elderly (노인의 거주지 주변 보행환경 인식이 만족도에 미치는 영향)

  • Park, Young-Eun;Jung, Sung-Gwan;Lee, Woo-Sung
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1111-1121
    • /
    • 2019
  • The purpose of this study is to analyze the effect of perceived walking environment around neighborhood on satisfaction for old adults in Daegu. The study was conducted using 407 questionnaires were collected through the survey. The walking environment was categorized into accessibility to neighborhood walking facilities and walking environment around path. Regarding perception of walking accessibility, access to 'public transit stops' and to 'medical facilities' was relatively high. For walking environment, 'pavement condition', 'continuity of sidewalk', and 'slope of sidewalk' were rated relatively high. Multiple regression analysis after factor analysis of walking environment variables showed that religious and convenient facilities, park and leisure facilities, and medical and welfare facilities had a significant effect on satisfaction in walking accessibility. For walking environment the convenience for walking, safety for walking, and amenities for walking had a significant effect on satisfaction. The findings from this study can be used for improving the walking environment for old adults.

The Comparative Analysis of EMG Depending on Variations of Speed in Forward Walking and Backward Walking (전방보행과 후방보행 시 속도변화에 따른 근전도 비교 분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Cho, Sang-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this study was to examine the differences of lower limbs muscle activities depending on three walking speeds of 2.5km/h, 5.0km/h and 7.5km/h during forward walking and backward walking making 14 students the subjects of this study. To achieve this aim, surface electrodes for factor analysis of EMG were adhered to rectus femoris, biceps femoris, tibialis anterior and gastrocnemius medial head of right lower limbs. The conclusions through this study are as follows. 1) The muscle activity of rectus femoris was higher in backward walking group than in forward walking group and it was the highest at 7.5km/h walking speed. 2) The muscle activity of biceps femoris was higher in forward walking group than in backward walking group. It was the lowest at 5.0km/h walking speed and the highest at 7.5km/h walking speed. 3) The muscle activity of tibialis anterior was higher in backward walking group than in forward walking group. It was the lowest at 5.0km/h walking speed and the highest at 7.5km/h walking speed. 4) The muscle activity of gastrocnemius medial head was higher in backward walking group than in forward walking group except P2. It was the lowest at 5.0km/h walking speed and the highest at 7.5km/h walking speed.

Effect of Walking-Environment Factor on Pedestrian Safety (보행환경요인이 보행안전에 미치는 영향분석)

  • Lee, Su-Min;Hwang, Gi-Yeon
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.107-114
    • /
    • 2009
  • Human walking is essential and important mean of transportation. Pedestrian safety is recently important because accidents often happen while walking. This research is showing that Walking-environmental factors have effect on safety while walking. At first, exact 15 factors and conduct survey in the preceding research. After that, exact 4 important factors through factor analysis. At result of Multiple regression analysis, null hypothesis has proved to be true by satisfying therms which is F-value 9.211 and P-value 0.000. and come to the conclusion that walking-environmental factors influence pedestrian safety. 4 important factors can be listed by below. Pedestrian-road characteristic, landscape characteristic, commercial characteristic, walking characteristics by following influence. Especially, landscape characteristic and pedestrian-road characteristic can be vital factors.

Mechanism Design of Cane-like Passive Type Walking Aid For the Elderly Using 3-RPS Parallel Manipulator (3-RPS 평형기구를 이용한 노인용 지팡이형 보행보조기기 메커니즘 개발)

  • Kim, Jeong-Hun;Jang, Dae-jin;Park, Tae-Wook;Yang, Hyun-Seok;Lee, Sang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.725-730
    • /
    • 2004
  • This paper has regarded mechanism design of cane-like passive type walking aid for the elderly using 3-RPS parallel manipulator. First, gait patterns of the elderly have been experimented. By means of motion capturing and image processing, we decided loaded forces and places of the cane when the elderly walked with a cane. Using these results we have developed a passive type walking aid. Second, the walking pattern has been simulated using dynamic analysis program, ADAMS and we find out the similarity between the real walking and the simulated walking. Finally after assuring the similarity, with adjusting the new mechanism design to the simulated walking we will decide whether the walking aid is safe and stable when the elderly walks with this cane-like walking aid. This paper will be basis for the development of the mechanism design applying 3-RPS parallel manipulator.

  • PDF

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Plantar Pressure Distribution During Level Walking, and Stair Ascent and Descent in Asymptomatic Flexible Flatfoot

  • Kim, Jeong-Ah;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • The first purpose was to identify the plantar pressure distributions (peak pressure, pressure integral time, and contact area) during level walking, and stair ascent and descent in asymptomatic flexible flatfoot (AFF). The second purpose was to investigate whether peak pressure data during level walking could be used to predict peak pressure during stair walking by identifying correlations between the peak pressures of level walking and stair walking. Twenty young adult subjects (8 males and 12 females, age $21.0{\pm}1.7$ years) with AFF were recruited. A distance greater than 10 mm in a navicular drop test was defined as flexible flatfoot. Each subject performed at least 10 steps during level walking, and stair ascent and descent. The plantar pressure distribution was measured in nine foot regions using a pressure measurement system. A two-way repeated analysis of variance was conducted to examine the differences in the three dependent variables with two within-subject factors (activity type and foot region). Linear regression analysis was conducted to predict peak pressure during stair walking using the peak pressure in the metatarsal regions during level walking. Significant interaction effects were observed between activity type and foot region for peak pressure (F=9.508, p<.001), pressure time integral (F=5.912, p=.003), and contact area (F=15.510, p<.001). The regression equations predicting peak pressure during stair walking accounted for variance in the range of 25.7% and 65.8%. The findings indicate that plantar pressures in AFF were influenced by both activity type and foot region. Furthermore the findings suggest that peak pressure data during level walking could be used to predict the peak pressure data during stair walking. These data collected for AFF can be useful for evaluating gait patterns and for predicting pressure data of flexible flatfoot subjects who have difficulty performing activities such as stair walking. Further studies should investigate plantar pressure distribution during various functional activities in symptomatic flexible flatfoot, and consider other predictors for regression analysis.

Analysis of Personal Gait Characteristics According to Legs Imbalance Gait (하지 보행 불균형 상태에 따른 개인별 보행 특성 분석)

  • Cho, Woo-Hyeong;Kim, Yeon-Wook;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.109-119
    • /
    • 2017
  • In the present study, to determine walking imbalance using the walking analysis method, where limitations in the existing walking analysis have been minimized, we propose a new walking analysis method that adopts the following: self-developed equipment to measure the angles of left-right hip joints and knee joints; a determination system using symmetry index (SI); and dynamic time warping (DTW) similarity analysis algorithm to analyze individual walking styles. Normal and imbalanced walking tests were conducted for 12 subjects without walking disorder. From the SI calculation to determine imbalanced walking, both the normal and imbalanced walking styles can be determined using the angle measurements of the left-right hip joints and knee joints. In the analysis of the individual walking styles, the similarities at the center of the lower back, left-right thighs, and dorsum of the feet of the 12 subjects in both normal and imbalanced walking cases were compared. From the similarity analysis of the measured values during the normal and imbalanced walking tests, I determined that the walking pattern does not maintain the same stance when the body parts move during walking.

Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot (이족보행로봇의 동적보행과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

A Meta-analysis of the Effect of Walking Exercise on Lower Limb Muscle Endurance, Whole Body Endurance and Upper Body Flexibility in Elders (노인 걷기운동이 하지근지구력, 전신지구력과 상체유연성에 미치는 효과: 메타분석)

  • Roh, Kook-Hee;Park, Hyeoun-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.4
    • /
    • pp.536-546
    • /
    • 2013
  • Purpose: The purpose of this study was to determine whether walking exercise improved physical function in elderly people using meta-analysis. Methods: Medical and nursing literature databases were searched to identify the studies on the effectiveness of walking exercise on physical function. In the databases, there were 16 articles reporting 21 interventions. Overall effect sizes for three outcome variables, elders' physical function in lower limb muscle endurance, whole body endurance and upper body flexibility, were calculated. Effects of study characteristics on outcome variables were analyzed. Results: The meta-analysis showed that walking exercise generally had positive effects on CST (chair stand test), 6MW (6 min walking), and SRT (standing or sitting reach test) with overall weighted effect sizes of 1.06, 0.41 and 0.29 respectively. This study also showed that the chronic disease status of the elders, intervention methods, and type of residence had different effects on CST, 6MW and SRT. Conclusion: The results indicate that walking exercise improves physical function in elders. Walking exercise which can be done at any time and any location is indeed a very effective exercise for elderly people.

Analysis of dynamic manipulability for four-legged walking robot (4족 보행 로봇의 동적 조작도 해석)

  • 이지홍;전봉환;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2721-2724
    • /
    • 2003
  • This paper deals with a manipulability analysis of multi-legged walking robots in acceleration domain, that is the dynamic manipulability analysis of walking robot. Noting that the kinematic structure of the walking robot is basically the same with that of the multiple serial robot system holding one object, the analysis method for cooperating robot is converted to that of walking robot. With the proposed method, the bound of achievable acceleration of the moving body is easily derived from the given bounds on the capabilities of Joint torques. Several walking robot examples are analyzed with proposed method under the assumption of hard contact, and presented in the paper to validate the method.

  • PDF