• Title/Summary/Keyword: Wake region estimation

Search Result 3, Processing Time 0.019 seconds

Wake Region Estimation of Artificial Reefs using Wake Volume Diagrams (후류체적선도를 이용한 인공어초 후류역 평가)

  • KIM, Dongha;JUNG, Somi;NA, Won-Bae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1042-1056
    • /
    • 2016
  • To evaluate the wake regions of six artificial reefs (ARs) frequently used in the marine forest creation project in Korea, we consider the effect of water flow directions on the wake regions and accordingly propose a wake region diagram, which is characterized by parameters such as wake volume fluctuations, averaged wake volume, fundamental symmetric angle, secure angle, and principal direction. To demonstrate the parameters, seven water flow directions (0 to $90^{\circ}$) were considered and consequently the variations in wake volumes were investigated by using the concept of wake volume, adopting element-based finite volume method, and utilizing numerical flow domain and boundary conditions. From the analysis results, it was shown that the wake region diagrams have a period of either 45 or $90^{\circ}$ according to the geometrical symmetry of each artificial reef. Also, it was found that the secure angle ranges fluctuate depending on the shapes and sizes of the artificial reefs considered. Thus, it is demanded to consider those parameters during installation of artificial reefs for establishing a larger wake region and accordingly attracting more marine fauna and flora in the region.

Flow Characteristics of Transitional Boundary Layers on a Flat Plate Under the Influence of Freestream Turbulent Intensity (자유유동 난류강도 변화에 따른 평판위 천이 경계층의 유동특성에 관한 실험적 연구)

  • Shin, Sung-Ho;Jeon, Woo-Pyung;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1335-1348
    • /
    • 1998
  • Flow characteristics in transitional boundary layers on a flat plate were experimentally investigated under three different freestream conditions i. e. uniform flow with 0.1 % and 3.7% freestream turbulent intensity and cylinder-wake with 3.7% maximum turbulent intensity. Instantaneous streamwise velocities in laminar, transitional and turbulent boundary layers were measured by I-type hot-wire probe. For estimation of wall shear stresses on the flat plate, measured mean velocities near the wall were applied to the principle of Computational Preston Tube Method (CPM). Distributions of skin friction coefficients were reasonably predicted in all developed boundary layers. Intermittency profiles, which were estimated using Conditional Sampling Technique in transitional boundary layers, were also consistent with previously published data. It was predicted that the incoming turbulent intensity had more influence on transition onset point and transition process than freestream turbulent intensity existed just over the transition region. It was also confirmed that non-turbulent and turbulent profiles in transitional boundary layers could not be simply treated as Blasius and fully turbulent profiles.

A Study on Estimation of Inflow Wind Speeds in a CFD Model Domain for an Urban Area (도시 지역 대상의 CFD 모델 영역에서 유입류 풍속 추정에 관한 연구)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this study, we analyzed the characteristics of flow around the Daeyeon automatic weather station (AWS 942) and established formulas estimating inflow wind speeds at a computational fluid dynamics (CFD) model domain for the area around Pukyong national university using a computational fluid dynamics (CFD) model. Simulated wind directions at the AWS 942 were quite similar to those of inflows, but, simulated wind speeds at the AWS 942 decreased compared to inflow wind speeds except for the northerly case. The decrease in simulated wind speed at the AWS 942 resulted from the buildings around the AWS 942. In most cases, the AWS 942 was included within the wake region behind the buildings. Wind speeds at the inflow boundaries of the CFD model domain were estimated by comparing simulated wind speeds at the AWS 942 and inflow boundaries and systematically increasing inflow wind speeds from $1m\;s^{-1}$ to $17m\;s^{-1}$ with an increment of $2m\;s^{-1}$ at the reference height for 16 inflow directions. For each inflow direction, calculated wind speeds at the AWS 942 were fitted as the third order functions of the inflow wind speed by using the Marquardt-Levenberg least square method. Estimated inflow wind speeds by the established formulas were compared to wind speeds observed at 12 coastal AWSs near the AWS 942. The results showed that the estimated wind speeds fell within the inter quartile range of wind speeds observed at 12 coastal AWSs during the nighttime and were in close proximity to the upper whiskers during the daytime (12~15 h).