• Title/Summary/Keyword: Wake flow

검색결과 873건 처리시간 0.03초

Numerical Computation for the Comparison of Stern Flows around Various Twin Skegs

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Choi, Young-Bok;Park, No-Joon
    • Journal of Ship and Ocean Technology
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2006
  • Numerical analysis of viscous flow around twin-skeg hull forms was conducted according to the variations of distance between skegs and vertical skeg inclinations by using a hydrodynamic analysis system, WAVIS. Six twin-skeg hull forms were derived by combining three distances between skegs (16m, 20m, 24m) and four vertical skeg angles ($0^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ}$). It is found that the better resistance performance can be obtained with larger vertical skeg angle and smaller skeg distance for the present test cases. It also can be seen that the same trend is true for the nominal wake distributions in the propeller plane. Those tendencies were confirmed by the experimental results of MOERI. It is shown that numerical analysis can be a useful and practical tool for the evaluation and improvement of hydrodynamic performances for the complex stern hull forms with twin skegs.

기상탑 차폐 영향에 따른 측정 풍속의 오차 분석 (The Error Analysis of measuring wind speed on Met Mast Shading Effect)

  • 고석환;장문석;이윤섭
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2011
  • In the performance test for wind turbines of medium and large, The reference met-mast should be installed for measurement reference wind speed as IEC 61400-12-1 standards and design of booms for mounted an anemometer must be considered exactly. Boom-mounted cup anemometer are influenced by flow distortion of the mast and the boom. Therefore design of booms must be important so that flow distortion due to booms should be kept below 0.5%. But, in some cases at size of met-mast structure, the distance of boom from mast is longer then measurement of wind speed is impossible because of oscillation of boom-mounted anemometer. In this paper, We measured a wind speed at several point from mast and boom and we analyzed the error of wind speed at each point of measurement. Also, we will suggest a correction method using the data curve fitting about errors of wind speed between each point of mounted anemometer.

가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰 (Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements)

  • 손명환;이기영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구 (Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

회전하는 실린더에 의한 공력소음의 계산 (Computation of Noise from a Rotating Cylinder)

  • 장성욱;이승배;김진화;한재오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

A hybrid method for predicting the dynamic response of free-span submarine pipelines

  • Li, Tongtong;Duan, Menglan;Liang, Wei;An, Chen
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.363-375
    • /
    • 2016
  • Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan's wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.

The effects of grooves on wind characteristics of tall cylinder buildings

  • Yuan, Wei-bin;Yu, Nan-ting;Wang, Zhao
    • Wind and Structures
    • /
    • 제26권2호
    • /
    • pp.89-98
    • /
    • 2018
  • For most full-scale tall buildings the Reynolds number of a flow field around a circular cylinder under strong wind is usually greater than $2{\times}10^7$, which is difficult to achieve in most wind tunnel tests. To explore the wind characteristics of tall cylindrical buildings with equidirectional grooves from subcritical to transcritical flow ($6.6{\times}10^4{\leq}Re{\leq}3.3{\times}10^5$ and $9.9{\times}10^6{\leq}Re{\leq}7.2{\times}10^7$), wind tunnel tests and full-scale large eddy simulations were carried out. The results showed that the rectangular-grooves narrow the wake width due to the downstream movement of the separation point and the deeper grooves cause smaller mean and fluctuating pressure while the peak pressure is little affected. Furthermore, the grooves lead to lower frequency of vortex shedding but the Strouhal number remains at the range from 0.15 to 0.35. The drag coefficient of the cylinders with grooves was found to be 2~3 times as large as that of smooth cylinders.

3차원 Volume PIV의 개발 (Development of 3-D Volume PIV)

  • 최장운;남구만;이영호;김미영
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Reynolds 수가 다른 컨테이너선 모형 주위의 유동 계산 (Calculation of Flows around Container Ship Models with Different Reynolds Numbers)

  • 김병남;박종환;김우전
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.258-266
    • /
    • 2007
  • CFD calculations are performed for KRISO 3600TEU container ship(KCS) models with different Reynolds numbers. Numerical calculations of the turbulent flows with the free surface around KCS have been carried out at $Re=0.791{\times}106\;and\;Re=1.4{\times}107$ using a standard Fluent package. In both cases, Froude number is fixed with 0.26 and wave elevation is simulated by using the VOF method. The calculated results at $Re=1.4{\times}107\;and\;Re=0.791{\times}106$ are compared with the experiment data of KRISO towing tank test and RIMS CWC test, respectively. Boundary layer thickness and wake field shows Reynolds number differences. There are some changes in wave pattern behind transom stern.