• 제목/요약/키워드: Wake flow

검색결과 874건 처리시간 0.03초

직접모사법을 이용한 극음속 대기 유동과 측면 제트의 상호 작용 해석 (Analysis of the Interaction Between Hypersonic Free Stream and Side Jet Flow Using a DSMC Method)

  • 김민규;권오준
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 직접모사법을 이용하여 고 고도 희박 영역에서 로켓의 자세 제어에 필수적인 측면 제트 분사와 그에 따른 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 밀도 차가 큰 자유 흐름 유동과 제트 유동을 동시에 모사하기 위해 입자 가중치 기법을 사용하였다. 두 수직한 평판 사이의 유동 및 측면 제트 분사에 의한 상호 작용 해석을 수행하였고 그 결과를 실험치와 비교하여 프로그램을 검증하였다. 좀 더 실제적인 로켓 모델로 blunted cone cylinder 형상에 대하여 받음각을 변화시켜가며 자유 흐름 유동과 측면 제트의 상호 작용에 대한 연구를 수행하였다. 표면 압력 차이의 분포를 기준으로 람다(lambda) 충격파와 후류의 영향을 토의하였다. 받음각이 있는 유동의 경우 leeward 방향으로는 제트와 자유 흐름 유동의 상호 작용이 약해지며, windward 방향으로는 상호 작용이 매우 강해지는 것을 확인할 수 있었다.

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

A Numerical Study of Turbulent Flow Around a Twin-Skeg Container Ship Model with Appendages

  • Kim, Hyoung-Tae;Lee, Pyung-Kuk;Kim, Hee-Taek
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.12-23
    • /
    • 2006
  • In this paper, a numerical study is carried out to investigate the turbulent flow around a twin-skeg container ship model with rudders including propeller effects. A commercial CFD code, FLUENT is used with body forces distributed on the propeller disk to simulate the ship stem and wake flows with the propeller in operation. A multi-block, matching, structured grid system has been generated for the container ship hull with twin-skegs in consideration of rudders and body-force propeller disks. The RANS equations for incompressible fluid flows are solved numerically by using a finite volume method. For the turbulence closure, a Reynolds stress model is used in conjunction with a wall function. Computations are carried out for the bare hull as well as the hull with appendages of a twin-skeg container ship model. For the bare hull, the computational results are compared with experimental data and show generally a good agreement. For the hull with appendages, the changes of the stem flow by the rudders and the propellers have been analyzed based on the computed result since there is no experimental data available for comparison. It is found the flow incoming to the rudders has an angle of attack due to the influence of the skegs and thereby the hull surface pressure and the limiting streamlines are changed slightly by the rudders. The axial velocity of the propeller disk is found to be accelerated overall by about 35% due to the propeller operation with the rudders. The area and the magnitude of low pressure on the hull surface enlarge with the flow acceleration caused by the propeller. The propellers are found to have an effect on up to the position where the skeg begins. The propeller slipstream is disturbed strongly by the rudders and the flow is accelerated further and the transverse velocity vectors are weakened due to the flow rectifying effect of the rudder.

낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석 (Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers)

  • ;정석민;김동주
    • 한국입자에어로졸학회지
    • /
    • 제17권4호
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.

받음각을 갖는 평판보의 유동 여기진동에 관한 연구 (A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack)

  • 이기백;손창민;김봉환
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1919-1932
    • /
    • 1991
  • 본 연구에서는 고강도 알루미늄 합금으로 제작된 평판보의 받음각(.alpha.)를 10˚ 에서 30˚까지 10˚씩 변화시킨 3가지의 모델에 대해, 각 모델의 Re$_{d}$수 변화에 대한 후류의 스펙트럼분석, 레이저 도플러 유속계(laser doppler velocimetry)를 이용 한 유동장 해석 및 평판보의 응답을 실험을 통해 조사, 분석하고 유동장과 측정이 용 이하지 않은 얇은 평판주위의 압력분포에 대한 전산해석을 수행함으로써 유동 여기진 동 구조의 규명을 시도하였다.다.

Semi-spade 타의 간극 캐비테이션에 대한 실험적 연구 (Experimental Investigation on the Gap Cavitation of Semi-spade Rudder)

  • 백부근;김경열;안종우;김용수;김성표;박제준
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.422-430
    • /
    • 2006
  • The horn and movable parts around the gap of the conventional semi-spade rudder are visualized by high speed CCD camera with the frame rate of 4000 fps (frame per second) to study the unsteady cavity pattern on the rudder surface and gap. In addition, the pressure measurements are conducted on the rudder surface and inside the gap to find out the characteristics of the flow behavior. The rudder without propeller wake is tested at the range of $1.0{\leq}{\sigma}_v\;1.6$ and at the rudder deflection angle of $-8{\leq}{\theta}{\leq}10^{\circ}$. The time resolved cavity images are captured and show strong cavitation around the rudder gap in all deflection angles. As the deflection angle gets larger, the flow separated from the horn surface increases the strength of cavitation. The accelerated flow along the horn decreases its pressure and the separated flow from the horn increases the pressure abruptly. The pressure distribution inside the gap reveals the flow moving from the pressure to suction side. In the negative deflection angle, the turning area on the movable part initiates the flow separation and cavitation on it.

Three-dimensional dynamics of vortex-induced vibration of a pipe with internal flow in the subcritical and supercritical regimes

  • Duan, Jinlong;Chen, Ke;You, Yunxiang;Wang, Renfeng;Li, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.692-710
    • /
    • 2018
  • The Three-dimensional (3-D) dynamical behaviors of a fluid-conveying pipe subjected to vortex-induced vibration are investigated with different internal flow velocity ${\nu}$. The values of the internal flow velocity are considered in both subcritical and supercritical regimes. During the study, the 3-D nonlinear equations are discretized by the Galerkin method and solved by a fourth-order Runge-Kutta method. The results indicate that for a constant internal flow velocity ${\nu}$ in the subcritical regime, the peak Cross-flow (CF) amplitude increases firstly and then decrease accompanied by amplitude jumps with the increase of the external reduced velocity. While two response bands are observed in the In-line (IL) direction. For the dynamics in the lock-in condition, 3-D periodic, quasi-periodic and chaotic vibrations are observed. A variety of CF and IL responses can be detected for different modes with the increase of ${\nu}$. For the cases studied in the supercritical regime, the dynamics shows a great diversity with that in the subcritical regime. Various dynamical responses, which include 3-D periodic, quasi-periodic as well as chaotic motions, are found while both CF and IL responses are coupled while ${\nu}$ is beyond the critical value. Besides, the responses corresponding to different couples of ${\mu}_1$ and ${\mu}_2$ are obviously distinct from each other.

Control of the VIV of a cantilevered square cylinder with free-end suction

  • Li, Ying;Li, Shiqing;Zeng, Lingwei;Wang, Hanfeng
    • Wind and Structures
    • /
    • 제29권1호
    • /
    • pp.75-84
    • /
    • 2019
  • A steady slot suction near the free-end leading edge of a finite-length square cylinder was used to control its aerodynamic forces and vortex-induced vibration (VIV). The freestream oncoming flow velocity ($U_{\infty}$) was from 3.8 m/s to 12.8 m/s. The width of the tested cylinder d = 40 mm and aspect ratio H/d = 5, where H was the height of the cylinder. The corresponding Reynolds number was from 10,400 to 35,000. The tested suction ratio Q, defined as the ratio of suction velocity ($U_s$) at the slot over the oncoming flow velocity at which the strongest VIV occurs ($U_{\nu}$), ranged from 0 to 3. It was found that the free-end slot suction can effectively attenuate the VIV of a cantilevered square cylinder. In the experiments, the RMS value of the VIV amplitude reduced quickly with Q increasing from 0 to 1, then kept approximately constant for $Q{\geq}1$. The maximum reduction of the VIV occurs at Q = 1, with the vibration amplitude reduced by 92%, relative to the uncontrolled case. Moreover, the overall fluctuation lift of the finite-length square cylinder was also suppressed with the maximum reduction of 87%, which occurred at Q = 1. It was interesting to discover that the free-end shear flow was sensitive to the slot suction near the leading edge. The turbulent kinetic energy (TKE) of the flow over the free end was the highest at Q = 1, which may result in the strongest mixing between the high momentum free-end shear flow and the near wake.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구 (A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait)

  • 뜨란 바우억;최민선;양창조
    • 해양환경안전학회지
    • /
    • 제25권7호
    • /
    • pp.982-990
    • /
    • 2019
  • 최근 점점 더 많은 연구자와 정부에서 해양에너지 자원 개발에 대한 관심이 고조되고 있다. 장죽수도는 조류에너지 밀도가 높아 조류 발전소를 건설하기에 적합한 잠재적 후보지 중 하나이다. 따라서 본 연구에서는 ADCIRC 모델을 이용하여 장죽수도의 조류자원의 잠재량을 평가하기 위한 수치적 접근방식을 제시하고, 내부 코드를 이용하여 조석 특성을 입력 매개변수로 활용하여 1 MW급 규모의 조류에너지 변환장치를 대상으로 4개의 레이아웃으로 배열하고 후류 효과로 인한 연간 에너지 생산량에 관한 수치해석을 수행하였다. 그 결과 효율이 가장 좋은 배치는 연간 최대 12.96 GWh/year의 에너지를 생성할 수 있으며, 이 값은 후류 효과로 인한 에너지 손실을 고려하면 연간 0.16 GWh씩 감소될 수 있음을 보였다. 또한, 창낙조 때 터빈 요 각도를 변경함으로써 이 요소가 에너지 추출에 미치는 영향을 분석하였으며, 터빈 배열은 터빈 요 각도가 346°와 164°(북쪽에서 시계 방향으로)일 때 대조기와 소조기에서 차례로 최대 조류 에너지를 얻을 수 있었다.