• 제목/요약/키워드: Wake flow

검색결과 874건 처리시간 0.023초

A PIV Study of Flow Patterns Over Stationary and Pitch-Oscillating Airfoils with Blowing Jet

  • Lee, Ki-Young;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.111-120
    • /
    • 2008
  • A particle image velocimetry (PIV) technique was employed to investigate the effects of blowing jet on the flow characteristics over stationary and pitch-oscillating airfoils. The Reynolds number was $7.84{\times}10^5$ based on the chord length. It was found that for stationary airfoil cases, continuous and pulsating blowing jets successfully reduced separated wake region at high angles of attack. A comparison study of two different types of jet blowing indicated that pulsating jet is more effective than continuous jet for flow separation control. Pulsating leading-edge blowing postpones flow separation and increased stall angle of attack by $2^{\circ}{\sim}3^{\circ}$. For pitch-oscillating airfoil cases, the PIV results showed that blowing jet efficiently delays the separation onset point during pitch-up stroke, whereas it does not prevent flow separation during pitch-down stroke, even at angles of attack smaller than static ones.

Turbulence Characteristics of a Three-Dimensional Boundary Layer on a Rotating Disk with an Impinging Jet (I) - Mean Flow - (충돌제트를 갖는 회전원판 위 3차원 경계층의 난류특성 (I) - 평균유동장 -)

  • Kang, Hyung Suk;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권9호
    • /
    • pp.1277-1289
    • /
    • 1998
  • The objective of the present study is to investigate experimentally the mean flow characteristics of the three-dimensional turbulent boundary layer over a rotating disk with an impinging jet at the center of the disk, which may be regarded as one of the simplest models for the flow in turbomachinery. A relatively strong radial outflow (crossflow) generated from the impinging jet is added to the radial outflow (crossflow) induced by the centrifugal force in order to create the three-dimensional boundary layer. A new calibration technique has been introduced to determine the velocity direction and magnitude using an I-wire probe, where the uncertainties are ${\pm}1.5^{\circ}$ and ${\pm}0.35\;m/s$, respectively, in the laminar boundary layer region, compared with the known exact solutions. The flow in the tangential direction is of similar type to that associated with a favorable pressure gradient, considering that no wake region appears in wall coordinate velocity profiles and the Clauser shape factor is between 4.0 and 5.3. The flow angle is significantly changed by the crossflow generated by the impinging jet.

The Flow Field Structure of Jet-in-Cross Flow through the Perforated Damage Hole (관통 손상 구멍으로부터의 제트-교차 흐름의 유동장 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제17권4호
    • /
    • pp.551-559
    • /
    • 2014
  • The influence of the battle damage hole on the velocity and vorticity flow field have been studied by using particle image velocimetry. Time averaged velocity and vorticity vector fields in the vicinity of jet are presented. The perforated damage hole on a wing created from a hit by anti-air artillery was modeled as a 10% chord size hole which positioned at quarter chord. At low angles of attack, the vorticity in the forward side of the jet is cancelled due to mixing with the wing surface boundary layer. Stretching of vorticity in the backside of the jet generates a semi-cylindrical vortical layer that enclosing a domain with slow moving reverse flow. Conversely, at higher the angles of attack, the jet vorticity advected away from the wing surface and remains mostly confined to the jet. The mean flow behind the jet has a wake-like structure.

Numerical Simulation of the Flow Around the SUBOFF Submarine Model Using a DES Method (DES법을 이용한 SUBOFF 잠수함 모델 주위 유동 수치해석 연구)

  • Suh, Sung-Bu;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제58권2호
    • /
    • pp.73-83
    • /
    • 2021
  • In this study, the numerical investigation of the flow around the SUBOFF submarine model is performed by using the Detached Eddy Simulation (DES) method which is developed based on the SST k-ω turbulence model. At the DES analysis level, complex vortical flows around the submarine model are caused mainly by the vortices due to the appendages and their interactions with the flows from the hull boundary layer and other appendages. The complexity and scale of the vortical flow obtained from the numerical simulations are highly dependent on the grid. The computed local flow properties of the submarine model are compared with the available experimental data showing a good agreement. The DES analysis more reasonably estimates the physical phenomena inherent in the experimental result in a low radius of the propeller plane where vortical flows smaller than the RANS scale are dominant.

Evaluation of Recursive PIV Algorithm with Correlation Based Correction Method Using Various Flow Images

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.409-421
    • /
    • 2003
  • The hierarchical recursive local-correlation PIV algorithm with CBC (correlation based correction) method was employed to increase the spatial resolution of PIV results and to reduce error vectors. The performance of this new PIV algorithm was tested using synthetic images, PIV standard images of Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with riblet surface. As a result, most spurious vectors were suppressed by employing the CBC method, the hierarchical recursive correlation algorithm improved the sub-pixel accuracy of PIV results by decreasing the interrogation window size and Increased spatial resolution significantly. However, with recursively decreasing of interrogation window size, the SNR (signal-to-noise ratio) in the correlation plane was decreased and number of spurious vectors was increased. Therefore, compromised determination of optimal interrogation window size is required for given flow images, the performance of recursive algorithm is also discussed from a viewpoint of recovery ratio and error ratio in the paper.

Linear Proportional Control of Flow Over a Sphere (구 주위 유동의 선형비례제어)

  • Jeon, Seung;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2753-2756
    • /
    • 2007
  • In the present study, we reduce the drag and lift fluctuations of the sphere by providing a linear proportional control. For this purpose, we measure the radial velocity along the centerline in the wake and provide blowing and suction at a part of sphere surface based on the measured velocity. Zero-net mass flow rate is satisfied during the control. This control is applied to the flow over a sphere at Re=300 and 425. We vary the sensing location at $0.8d{\leq}X_s{\leq}1.3d$ and find that the most effective sensing region coincides with the location at which minimum correlation between the lift and sensing-velocity directions occurs. As a result, the lift and drag fluctuations are significantly reduced.

  • PDF

Velocities Induced by Stator Arrays in a Class of Shear Flows (전단 유동중에 놓인 스테이터에 의한 유기속도)

  • E.D.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • 제27권2호
    • /
    • pp.13-20
    • /
    • 1990
  • The interaction of the flows induced by stator blades with a ship-like wake is discussed to obtain the flow components of each with and without radial shear. The flow induced by stator blades is modeled by lifting line theory and the shear is taken to be provided by the radial gradient of the peripheral mean axial flow approximated by a logarithmic function of radius for a class of vessels. And the theory is based on the linearized Euler equations in the absence of viscosity. The results show that shear effects are relatively large at inner radii and the distribution of blade pitch angles is most effective in reducing non-uniformity.

  • PDF

Flow and Fluid Force around a Rotating Circular Cylinder with Square Grooves (정방형 홈을 가진 회전원주 주위의 유동과 유체력)

  • Kang, Myeong-Hoon;Ro, Ki-Deok;Kong, Tae-Hue
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1460-1465
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of $Re=1.0{\times}10^{4}$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from $Re=1.2{\times}10^{4}$ to $Re=2.0{\times}10^{4}$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

  • PDF

Numerical Study on the Interaction of Liquid Fuel Droplets in the Reacting Flow Field (연소 유동장 내 액체 연료 액적간의 상호작용에 대한 수치적 연구)

  • Cho, Chong-Pyo;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-71
    • /
    • 2001
  • The objective of this work is to elucidate the details of two key factors dominating the droplet buring behavior in sprays : droplet-droplet interaction and convective flow. The combustion of a one-dimensional linear droplet array with a convective flow has been studied. A one-step, second order model was employed to simulate the chemical reaction in the combustion process. Results for droplet arrays burning at two Reynolds numbers, 50 and 100, two horizontal droplet spacings, 5 and 11 radii, and two vertical droplet spacing, 2 and 4 radii, were obtained. The results indicate the droplet burning behavior is affected by Reynolds number, droplet-droplet spacing, and the relative location of droplets in the array. Droplet-droplet interaction was found to be strong for arrays with smaller droplet spacing.

  • PDF

RVM Simulation of Unsteady Flows behind Bluffbody (랜덤와동해법에 의한 Bluffbody 비정상 유동장의 해석)

  • Kang Sung-Mo;Kim Yong-Mo;Lyu Myung-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.246-252
    • /
    • 1995
  • The transient incompressible flow behind the bluffbody is numerically simulated using the random vortex method(RVM). Based on the vorticity formulation of the unsteady Navier-Stokes equations, the Lagrangian approach with the random walk technique is employed to account for the transport processes of the vortex elements. The random walk procedure for the diffusion process has been validated against the exact solutions. The present simulation focuses on the transition flow regime where the recirculation zone behind the bluffbody becomes highly unsteady and large-scale vortex eddies are shed from the bluffbody wake. The unsteady flow structures and the mixing characteristics behind the bluffbody are discussed in details.

  • PDF