• Title/Summary/Keyword: Wake effect

Search Result 420, Processing Time 0.022 seconds

Large eddy simulation of flow over a wooded building complex

  • Rehm, R.G.;McGrattan, K.B.;Baum, H.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.291-300
    • /
    • 2002
  • An efficient large eddy simulation algorithm is used to compute surface pressure distributions on an eleven story (target) building on the NIST campus. Local meteorology, neighboring buildings, topography and large vegetation (trees) all play an important part in determining the flows and therefore the pressures experienced by the target. The wind profile imposed at the upstream surface of the computational domain follows a power law with an exponent representing a suburban terrain. This profile accounts for the flow retardation due to friction from the surface of the earth, but does not include fluctuations that would naturally occur in this flow. The effect of neighboring buildings on the time dependent surface pressures experienced by the target is examined. Comparison of the pressure fluctuations on the single target building alone with those on the target building in situ show that, owing to vortices shed by the upstream buildings, fluctuations are larger when such buildings are present. Even when buildings are lateral to or behind the target, the pressure disturbances generate significantly different flows around this building. A simple grid-free mathematical model of a tree is presented in which the trunk and the branches are each represented by a collection of spherical particles strung together like beads on a string. The drag from the tree, determined as the sum of the drags of the component particles, produces an oscillatory, spreading wake of slower fluid, suggesting that the behavior of trees as wind breakers can be modeled usefully.

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

Wind direction field under the influence of topography, part I: A descriptive model

  • Weerasuriya, A.U.;Hu, Z.Z.;Li, S.W.;Tse, K.T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.455-476
    • /
    • 2016
  • In both structural and environmental wind engineering, the vertical variation of wind direction is important as it impacts both the torsional response of the high-rise building and the pedestrian level wind environment. In order to systematically investigate the vertical variation of wind directions (i.e., the so-called 'twist effect') induced by hills with idealized geometries, a series of wind-tunnel tests was conducted. The length-to-width aspect ratios of the hill models were 1/3, 1/2, 1, 2 and 3, and the measurements of both wind speeds and directions were taken on a three-dimensional grid system. From the wind-tunnel tests, it has been found that the direction changes and most prominent at the half height of the hill. On the other hand, the characteristic length of the direction change, has been found to increase when moving from the windward zone into the wake. Based on the wind-tunnel measurements, a descriptive model is proposed to calculate both the horizontal and vertical variations of wind directions. Preliminarily validated against the wind-tunnel measurements, the proposed model has been found to be acceptable to describe the direction changes induced by an idealized hill with an aspect ratio close to 1. For the hills with aspect ratios less than 1, while the description of the vertical variation is still valid, the horizontal description proposed by the model has been found unfit.

Unsteady Aerodynamic Analysis of the Wing with Flaperon Flying over Nonplanar Ground Surface (비평면 지면 효과를 받는 플래퍼론이 있는 날개의 비정상 공력해석)

  • Joung, Yong-In;Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.369-374
    • /
    • 2007
  • Unsteady aerodynamic characteristics of the wing with flaperon flying over nonplanar ground surface are investigated using a boundary-element method. The time-stepping method is used to simulate the wake shape according to the motion of the wing and flaperon over the surface or in the channel. The aerodynamic coefficient according to the periodic motion of the flaperon is shown as the shape of loop. The rolling moment coefficient of the wing flying in the channel is same as that of the wing flying over the ground surface. The variation range of pitching moment is wider when the wing flies in the channel than over the ground surface. The present method can provide various aerodynamic derivatives to secure the stability of superhigh speed vehicle flying over nonplanar ground surface using the present method.

The Flow Control by a Vertical Splitter Plate for a Square Prism near a Wall (벽면 근처에 놓인 정방형주의 수직 분할판에 의한 유동 제어)

  • Ro, Ki-Deok;Cho, Ji-Ryong;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • The passive control by vertical splitter plate of fluid force acting on a square prism near a plane wall was studied by measuring of fluid force on the prism and by visualization of the flow field using PIV. The hight of the splitter plate was 10% of the square width. The experimental parameters were the attaching position of vertical splitter plate and the space ratios G/B to the prism height. Time variation of vorticity was most remarkable at 3.0B(B: prism height) position toward wake direction from the center of the prism. The point of inflection of average lift coefficient and Strouhal number on the prism were represented at the space ratio G/B=0.4~0.6 for the prism having vertical splitter plate. The drag of the prism was reduced average 5.0% with the space ratios by attaching the vertical splitter plate at the upper and rear corner on the prism. In this case, the size of the separated region on the upside of the prism was smaller than that of prism having no the splitter plate.

Computational Flow Analysis on Applicability of Vehicle-Induced Wind to Highway to Wind Power Generation (차량 유도풍 풍력발전 활용 가능성의 전산유동해석)

  • Kim, Hyun-Goo;Woo, Sang-Woo;Jang, Moon-Seok;Shin, Hyung-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The possibility of whether the induced wind from a vehicle traveling on highway can be used in wind power generation has been verified through computational flow analysis. The bus which is presumed to accompany relatively strong and wide range of induced wind compared to passenger vehicles because of its wide frontal area has been set as the subject of research. In order to ensure the reliability of research, the flow analysis surrounding the bus on a flat road where median strip is not installed has been compared with a preceding research while the validity of grid system and interpretation method used in this research have been assured by a qualitative method. In case of the median strip type wind power generator system, because it has been verified that a strong streamwise wind speed (5 m/s) is derived from the contraction effect of flow passage between the bus and the median strip while maintaining a relatively consistent upwind wind speed (1.4 m/s) in vertical direction in the wake area after the bus passes by although the change of wind speed is intense, it was decided as having some possibility of wind power generation. In case of the traffic sign panel type wind power generator system installed at the upper top of highway, because the wind speed of 2 m/s level has been derived for a limited time only at a section equal to the length of the bus and a faint induced wind speed less than 0.5 m/s was shown at other regions, it was decided as having almost no possibility of wind power generation.

  • PDF

Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine (증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향)

  • Yoon, In-Soo;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

Analysis of Fake News in the 2017 Korean Presidential Election

  • Go, Seon-gyu;Lee, Mi-ran
    • Asian Journal for Public Opinion Research
    • /
    • v.8 no.2
    • /
    • pp.105-125
    • /
    • 2020
  • The purpose of this paper is to analyze 1) who created and distributed fake news, 2) the distribution channels of fake news, 3) who fake news has targeted, and 4) the effects on voting and the impact of fake news on Korean politics. In South Korea, fake news was mainly created by candidates or election campaigns. The reason is that in the wake of the impeachment of President Park Guen Hye, all the political parties in Korea used fake news as a means of mobilizing supporters for each of their candidates or parties to gain an advantage in situations involving political divisions and confrontations between the pro-impeachment, progressive young generation and anti-impeachment, conservative senior generation. Voters' media usage patterns were polarized through social network services (SNS) media and television. Fake news was mostly received through these two media outlets. According to the spreading structure of fake news in Korea, the younger generation generally uses SNS posts intended for unspecified individuals, and the older generation uses closed SNS like KakaoTalk or Naver's BAND. In the end, it is typically characteristic of the older generation to spread fake news through existing offline human networks. In the 2017 presidential election, fake news has been confirmed to have the effect of mobilizing supporters for each political party. In the presidential election, an increase in voter turnout was confirmed among those in their 20s and those in their 60s or older. Evidently, fake news influenced the election of Moon Jae-In. The influence of fake news is expected to grow further as ideological polarization and consequent political polarization continues to intensify in South Korea.

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

An Experimental Study on the Flow Around a Simplified 2-Dimensional Vehicle-Like body (단순화된 2차원 자동차형 물체주위의 유동에 관한 실험적 연구)

  • 유정열;김사량;강신형;백세진;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.178-189
    • /
    • 1989
  • An experimental study has been performed to study the effect of the base slant angle of a 1/10 scale two-dimensional vehicle-like body on its wake flow including the recirculating region, where the simplified shape of the body has been originated from a profile of a domestic passenger car. In the case of a Reynolds number based on the length of the model R=7.96*10$^{5}$ , the surface pressure coefficient, the mean velocity and the turbulent stresses have been measured, while the flow visualization technique using wool tuft has been adopted as well. When the base slant angle of the model is 15.deg., the free stream flowing parallel to the slant is observed to be separated from the lower edge of the slant, thus forming the smallest recirculating region. When the base slant angles are 30.deg. and 45.deg., the free streams are separated from the upper edge of the slant and the sizes of the recirculating zones are observed to be almost the same as when the base slant angle is 0.deg. From these observations, it is conjectured that between the base slant angles of 15.deg. and 30.deg. there exists a critical angle at which the size of the recirculating region becomes minimum and as the slant angle becomes larger than this critical angle the separation line moves along the slant towards the rear edge of the roof. Through the flow visualization technique, the existence of the two counter-rotating bubbles in the recirculating region has been clearly observed and verified.