• Title/Summary/Keyword: Wake Structure

Search Result 228, Processing Time 0.025 seconds

Evaluation of URANS Turbulence Models through the Prediction of the Flow around a Circular Cylinder (원형 실린더 주위의 유동해석을 통한 URANS 난류 모델 성능 비교)

  • Kim, Minjae;Shin, Jihwan;Kwon, Laeun;Lee, Kurnchul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.861-867
    • /
    • 2014
  • In the present study, the flow around a circular cylinder at $Re=3.6{\time}10^6$ is numerically simulated using URANS approach. The objective of this study is to evaluate the turbulence models(Realizable k-${\varepsilon}$, RNG k-${\varepsilon}$) through the prediction of the unsteady flow characteristics around the cylinder. The time-averaged drag coefficients and vortex shedding phenomenon in the wake region are compared to available experimental data and other numerical results. The simulation with Realizable k-${\varepsilon}$ model is found to be more dissipative due to large eddy viscosity predicted in the wake region while the simulation with RNG k-${\varepsilon}$ model predicts a complex vortex shedding phenomenon with more coherent structures realistically.

Heat transfer enhancement of finless TEFC induction motor frame by installing guide vanes (핀이 없는 전폐형 유도전동기 프레임의 정익 설치에 의한 열전달 향상)

  • Jeon, Chang-Seong;Go, Sang-Geun;Yun, Myeong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.849-859
    • /
    • 1998
  • The heat generated in an induction motor is mostly dissipated through the frame. The study on the heat transfer characteristics of a newly manufactured finless TEFC(Totally Enclosed Fan Cooled) induction motor showed/that it had an unsuitable structure in view of the heat transfer. The angle of the cooling air flow was very large and the ribs disturbed the air flow and partially generated the wake region on the frame. In the wake region the temperature was very high. Thus the heat transfer coefficients were lower than those of the frame with fins. Also was investigated the heat transfer characteristics of the motor frame by installing various guide vanes in the fan-side end cap. An optimum heat transfer case was found and the average heat transfer coefficient of the frame was 70% higher and the average coil temperature measured by the resistance method was 9 deg. C lower than that of the frame which had no guide vanes.

A study on flow around a passenger vehicle model (승용차 모형주위의 유동에 관한 연구)

  • 장성원;유정열;이택식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.53-62
    • /
    • 1990
  • A wind tunnel experiment for the flow around a 1/5 scale passenger vehicle model has been carried out. A 5-hole Pitot tube is used for measuring velocity distributions around the model and a scanivalve with 48 ports is used for measuring surface pressure distribution at various Reynolds numbers. In order to observe the flow on the surface and in the wake region, a flow visualization experiment has been performed using wool tuft with and without paper cones. In addition, a 2-dimensional viscous calculation considering only the mid-plane section of the model has been performed. A complex wake structure in the immediate rear of the model has been confirmed. The distributions of the surface pressure coefficient are not sensitively dependent on the Reynolds Number. In the first half of the model, they do not seem to vary form section to section. However, in the second half, they do vary from section to section, especially at the bottom surface, which indicates that the cross flow vortex is more affected by the bottom surface than the top surface. The qualitative agreement of the measured and calculated velocity field also explains the usefulness of the 2-dimensional calculation in the limited sense.

  • PDF

WALL EFFECTS ON LAMINAR FLOW OVER A CUBE (정육면체 주위 층류 유동에 근처 벽면이 미치는 영향)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • Laminar flow over a cube near a plane wall is numerically investigated in order to understand the effects of the cube-wall gap on the flow characteristics as well as the drag and lift coefficients. The main focus is placed on the three-dimensional vortical structures and its relation to the lift force applied on the cube. Numerical simulations are performed for the Reynolds numbers between 100 and 300, covering several different flow regimes. Without a wall nearby, the flow at Re=100 is planar symmetric with no vortical structure in the wake. However, when the wall is located close to the cube, a pair of streamwise vortices is induced behind the cube. At Re=250, the wall strengthens the existing streamwise vortices and elongates them in the streamwise direction. As a result, the lift coefficients at Re=100 and 250 increase as the cube-wall gap decreases. On the other hand, without a wall, vortex shedding takes place at Re=300 in the form of a hairpin vortex whose strength changes in time. The head of hairpin vortex or loop vortex, which is closely related to the lift force, seems to disappear due to the nearby wall. Therefore, unlike at Re=100 and 250, the lift coefficient tends to decrease more or less as the cube approaches the wall.

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

Drag Reduction of NACA0012 Airfoil with a Flexible Micro-riblet (마이크로 리블렛이 부착된 NACA0012 익형의 항력 감소 연구)

  • Jang Young Gil;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.479-482
    • /
    • 2002
  • Riblets with longitudinal grooves along the streamwise direction have been used as an effective flow control technique for drag reduction. A flexible micro-riblet with v-grooves of peak-to-peak spacing of $300{\mu}m$ was made using a MEMS fabrication process of PDMS replica. The flexible micro-riblet was attached on the whole surface of a NACA0012 airfoil with which grooves are aligned with the streamwise direction. The riblet surface reduces drag coefficient about $7.9{\%}\;at\;U_o=3.3m/s$, however, it increases drag about $8{\%}\;at\;U_o=7.0m/s$, compared with the smooth airfoil without riblets. The near wake has been investigated experimentally far the cases of drag reduction ($U_o\;=\;3.3 m/s$) and drag increase ($U_o\;=\;7 m/s$). Five hundred instantaneous velocity fields were measured for each experimental condition using the cross-correlation PIV velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to get spatial distribution of turbulent statistics such as turbulent kinetic energy. The experimental results were compared with those of a smooth airfoil under the same flow condition. The micro-riblet surface influences the near wake flow structure largely, especially in the region near the body surface

  • PDF

A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder (타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구)

  • Choe, Jae-Ho;Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

Experimental Study on the Thermal Performance of Piezoelectric Fan in an Enclosure (밀폐공간 내에서 압전세라믹 냉각홴의 열성능에 대한 실험적 연구)

  • Park, Sang-Hee;Choi, Moon-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1173-1180
    • /
    • 2006
  • This study deals with fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) fan in an enclosure. The fluid flows were generated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in an enclosure($270\times260\times90mm^3$). Input voltages of 30V and 40V, and a resonance frequency of 28Hz were used to vibrate the cooling fan. Input power to the module was 4W. The height in an enclosure was changed 23$\sim$43mm. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film. As the height in an enclosure and the input voltage of PZT fan increased, the cooling effect of module using a PZT fan increased. We found that the flow type was T- or Y-shape and the cooling effect was increased by the wake generated by a PZT fan.