• Title/Summary/Keyword: Wake Structure

Search Result 228, Processing Time 0.025 seconds

Characteristics of Flow p ast an Oscillating Sphere (진동하는 구를 지 나는 유동의 특성)

  • Lee, Dae-Sung;Yoon, Hyun-Sik;Ha, Man-Yeong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.284-287
    • /
    • 2008
  • Flow over a sphere under forced oscillation at Re=300 is simulated for various frequency ratios which are defined as excitation frequency over natural frequency of stationary sphere. The results of oscillating sphere are compared with those of stationary sphere and an oscillating cylinder. Detailed vortical structures, hydrodynamic forces and frequencies of the wake are prescribed as a function of frequency ratio. For oscillating sphere, planar symmetry of the wake is kept and two nearly symmetric hair pin vortices are induced by oscillation for one period of oscillation when the frequency ratio is bigger than 0.5. Modulation phenomenon which can be found in an oscillating cylinder were not seen for an oscillating sphere.

  • PDF

Numerical Analysis of Flow around Propeller Rotating Beneath Free Surface (자유수면 아래에서 회전하는 프로펠러 주위 유동 수치 해석)

  • Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.427-435
    • /
    • 2015
  • This paper provides the numerical results of a simulation of the flow around a propeller working beneath the free surface. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes (URANS) equations, where the wave-making problem is solved using a volume-of-fluid (VOF) method. The numerical analysis focuses on the propeller wake structure affected by the free surface, where we consider another free surface boundary condition that treats the free surface as a rigid wall surface. The propeller wake under the effect of these two free surface conditions shows a reduction in the magnitude of the longitudinal and vertical flow velocities, and its vortical structures strongly interact with the free surface. The thrust and torque coefficient under the free surface effect decrease about 3.7% and 3.1%, respectively. Finally, the present numerical results show a reasonable agreement with the available experimental data.

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 실험적 연구)

  • Im, Hui-Chang;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.260-268
    • /
    • 2001
  • Wake structures behind two circular cylinders with different groove configurations(U and V-shape) have been investigated experimentally. The results were compared with those for the smooth cylinder having the same diameter D. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number in the range of Re(sub)D=8,000∼14,000. As a result, the U-shaped groove was found to reduce the drag up to 18.6%, but the V-shaped groove reduced drag force only 2.5% compared with the smooth cylinder. As the Reynolds number increases, the vortex shedding frequency becomes a little larger than that of the smooth cylinder. The visualized flow using the smoke-wire and particle tracing methods shows the flow structure qualitatively.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Effect on the Wake Flow according to Various length of Rectangular Cylinder in a Parallel Arrangement (병렬구조를 가진 장방형 실린더의 길이가 후류 유동에 미치는 영향)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.760-767
    • /
    • 2014
  • An experimental study is carried out to investigate the effect of jet stream in the gab of rectangular cylinders with different length in a parallel arrangement by using PIV method in a circulating water channel. The height(h) of the rectangular cylinder and the gap between the cylinder is 10mm, and the width(B) which is 300mm. The length of the model for flow direction was applied to 30mm, 60mm, 90mm & 120mm, The aspect ratio of a model on the basis of height(H=30mm) is 1, 2, 3 and 4. Reynolds number $Re=1.4{\times}10^4$, $Re=2.0{\times}10^4$, $Re=2.9{\times}10^4$ based on the height(H) of model for the distance of tidal distributions as of water depth have been applied during the whole experiments. The measurement area was set to 5H rear of the cylinder. As a result, Vortex size in the wake area were increased as velocity increased. and high aspect ratio increased through-flow velocity component in the near wake. Velocity deficit increased highly after near-wake area and low aspect ratio.

Computational analysis of coupled fluid-structure for a rotor blade in hover (정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1139-1145
    • /
    • 2008
  • numerical study on the coupled fluid-structure for a rotor blade in hover was conducted. Computational fluid dynamics code with enhanced wake-capturing capability is coupled with a simple structural dynamics code based on Euler-Bernoulli's beam equation. The numerical results show a reasonable blade structural deformation and aerodynamic characteristics.

Investigation on Flow Structure behind Circular and Elliptical Ring by Particle Image Velocimetry (PIV 속도장 측정기법을 이용한 링 후류 유동구조에 대한 실험적 연구)

  • Kim, Seung-Gon;Kim, Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.312-315
    • /
    • 2008
  • The flow structure behind circular and elliptical type rings embedded in a cross-flow was investigated experimentally using two-frame particle image velocimetry (PIV). The experiments were performed in a circulating water channel with a test section of 0.35m height ${\times}$ 0.3m width ${\times}$ 1.1m length. PIV measurements were carried out with varying the Reynolds number in the range of 4.5 ${\times}$ $10^2$ - 4.5 ${\times}$ $10^3$. In the present study, turbulent flow structures in the stream-wise direction and span-wise direction were investigated. The mean velocity field distribution was obtained by statistical-averaging instantaneous velocity fields. The spatial distributions of turbulent statistics such as turbulent intensities and turbulent kinetic energy were also investigated.

  • PDF

An Improvement of the Vortex Particle Method (와류입자법의 개선)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 1999
  • Modifications were made in the vortex particle method by reducing the number of numerical parameters and adapting more accurate integration schemes. The method was applied to 0.15, 0.2 and 0.25 rectangles where the original method yielded poor results. Structure of vortex formation and its shedding in the wake was clearly shown, and vortex shedding was more regular than that without the modifications, while the time-averaged drag coefficients were nearly the same. It was confirmed the modified method could be used in the viscous vortex particle method.

  • PDF

Wake structure study around a NACA 4412 airfoil using EDISON CFD (EDISON CFD를 이용한 NACA 4412 익형의 후류 형상 연구)

  • Sim, Gyu-Ho;Jo, Hyeong-Gyu;Kim, Mun-Sang
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.81-84
    • /
    • 2012
  • 항공기 설계에서 중요한 해석 대상중의 하나인 에어포일 NACA 4412 형상을 2차원 난류 점성유동으로 접근하여 일정 받음각에 따른 유동 현상을 실험 결과와 비교해 보았다. 또한, 역압력구배, 유동 박리, 와류 등의 현상이 어디에서 어떻게 생성되는지 해석을 통하여 분석해 보았다.

  • PDF

Analysis of Sidewind Stability for Different Car Section Shape. (차량 단면 형상에 따른 측풍 안정성 해석)

  • 김재훈;이보성;이동호
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.67-74
    • /
    • 1999
  • When high speed train meets sidewind, folwfields around the train is very complex. In this case, the force by sidewind has a bad effect on stability of train. We can observe that the flow separates, reattaches, and forms all unsteady vortex in the wake region behind tile structure. Such folwfield can be analyzed by $\kappa$-$\omega$ SST model, and we investigate the effect for various section shape of high speed train. So we acquire the result that as tile corner of train section is rounder, stability of train is better.

  • PDF