• Title/Summary/Keyword: Wafer Surface

Search Result 969, Processing Time 0.028 seconds

Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I) (Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I))

  • Kim, Dae-Yeon;Gang, Gye-Won;Choe, Byeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.459-463
    • /
    • 2000
  • Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

  • PDF

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry ($BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Field emission properties of diamond-like carbon films deposited by ion beam sputtering (이온빔 스퍼터링으로 제작된 다이아몬드성 카본 필름의 전계 방출 특성)

  • 안상혁;이광렬;전동렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Field emission behaviors from diamond-like carbon films were investigated. The films were deposited on n-type Si wafer by ion beam sputtering method using 3 cm Kaufman type ion source. Regardless of the film thicknesses and atomic bond structure, the emission current was much enhanced by electrical breakdown between anode and the film surface. The effective work function was estimated to be about 0.1 eV. In order to identify the emission site, tungsten tip was scanned the damaged region damaged region but localized to a specific site. Analysis using Auger electron spectroscopy and SEM shows that SiC compound was not a sufficient condition for the electron emission. This result showed that the enhanced emission was mainly due to the changes in the chemical bond of the damaged region rather than the enhanced electric field caused by the morphological change.

  • PDF

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • Jang, Hun-Sik;Lee, Seok-Cheol;Kim, Ho-Jong;Jeong, In-Hyeon;Park, Jong-Seo;Nam, Seung-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

PBMS (Particle Beam Mass Spectrometer)를 이용한 크기 분류시 발생하는 입자 확산현상 분석에 관한 연구

  • Mun, Ji-Hun;Sin, Yong-Hyeon;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.232-232
    • /
    • 2012
  • 반도체 공정에서 일반적으로 오염입자를 측정하는 방법은 테스트 웨이퍼를 ex-situ 방식인 surface scanner를 이용하여 분석하는 particle per wafer pass (PWP) 방식이 주를 이루고 있다. 이러한 오염입자는 반도체 수율에 결정적인 역할을 하는 것으로 알려져 있으며 반도체 선폭이 작아지면서 제어해야하는 오염입자의 크기도 작아지고 있다. 하지만, 현재 사용하는 PWP 방식은 실시간 분석이 불가능하기 때문에 즉각적인 대처가 불가능 하고 이는 수율향상에 도움이 되지 못하는 후처리 방식이다. 따라서 저압에서 오염입자를 실시간으로 측정할 수 있는 장비에 대한 요구가 늘어나고 있는 실정이다. 저압에서 나노입자를 측정할 수 있는 장비로 PBMS가 있다. PBMS는 electron gun을 이용하여 입자를 하전시킨 후 편향판을 이용하여 크기를 분류하고 Faraday cup으로 측정된 전류를 환산하여 입자의 농도를 측정하는 장비이다. 편향판에 의하여 Faraday cup으로 이동되는 입자들은 농도 차에 의한 확산현상이 발생한다. 본 연구에서는 Faraday cup 이동 시 발생하는 확산현상을 여러 크기의 Faraday cup과 polystyrene latex (PSL) 표준입자를 이용하여 분석하였다. Faraday cup을 고정 식이 아닌 이동 식으로 설계를 하여 축의 원점을 기준으로 이동시켜 가면서 입자 전류량을 측정하였으며, 이를 기준 (reference) Faraday cup의 측정량과 비교하여 효율을 계산하였다. PSL 표준 입자 100, 200 nm 크기에 대하여 cup의 크기를 바꿔 가면서 각각 평가 하였다. 그 결과 입자의 크기가 작을 수록 더 넓은 구간으로 확산되었고 크기가 작은 Faraday cup의 경우에 정밀한 결과를 얻을 수 있었다. 본 연구를 통하여 편향판을 지나면서 발생하는 입자의 확산현상에 대한 정량적 평가를 수행할 수 있었으며, 추후 PBMS 설계 시 Faraday cup 크기를 결정하고 Faraday cup array 기술을 적용하는데 유용하게 활용 될 수 있을 것으로 기대 된다.

  • PDF

Effect of Design Parameters on the Efficiency of the Solar Cells Fabricated Using SOI Structure (SOI 구조 이용한 결정질 규소 태양전지의 최적설계)

  • Lee, Gang-Min;Kim, Yeong-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.890-895
    • /
    • 1999
  • The recent important issue in solar cell fabrication is to adopt thin film silicon solar cells on cheap substrates. However, thin cells demand new grid design concept that all the contacts(to the emitter and base) be located on the front surface. Hence, the aim of the investigation presented in this paper was to determine the potential and the basic limitation of the design. With this concept, an interdigitated front grid structure was realized and cells were fabricated through a set of photolithography processes. Confirmed efficiencies of up to 11.5% were achieved on bonded SOI wafers with a cell thickness of 50$\mu\textrm{m}$ in the case of finger spacing more than $\mu\textrm{m}$ and a base width of 35$\mu\textrm{m}$. It was also shown from the results that the design rules for optimizing the base fraction and reducing the shadowing fraction are noted as an important technique to realize high-efficiency thin silicon solar cells.

  • PDF

Micro-patterning of Multi-layered Magnetic Metal Films Using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속 막의 패턴 식각)

  • Chae, Sang-Hun;Seo, Yeong-Jun;Song, Jae-Seong;Min, Bok-Gi;An, Seung-Jun;Lee, Ju-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.171-174
    • /
    • 2000
  • In this study, the laser patterning of sputter-deposited amorphous CoNbZr films has been tried usig Nd: YAG laser. However, the metal film was not removed because of its high reflectance of the alser on the metal surface. To solve this problem, authors tried to screen-print a block polymer on the metal film and then irradiate the laser on the polymer. This is a new method which was suggested by this study. Using this new method, the metal films were effectively removed with the laser power of 114W even though the metal films was not removed with the laser power of 332W using the conventional method. This result leads to the conclusion that the block polymer acts as a laser energy absorbing and transferring layer.

  • PDF

Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices (반도체 소자용 구리 배선 형성을 위한 전해 도금)

  • Kim, Myung Jun;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.26-39
    • /
    • 2014
  • Cu interconnection in electronic devices is fabricated via damascene process including Cu electrodeposition. In this review, Cu electrodeposition and superfilling for fabricating Cu interconnection are introduced. Superfilling results from the influences of organic additives in the electrolyte for Cu electrodeposition, and this is enabled by the local enhancement of Cu electrodeposition at the bottom of filling feature formed on the wafer through manipulating the surface coverage of organic additives. The dimension of metal interconnection has been constantly reduced to increase the integrity of electronic devices, and the width of interconnection reaches the range of few tens of nanometer. This size reduction raises the issues, which are the deterioration of electrical property and the reliability of Cu interconnection, and the difficulty of Cu superfilling. The various researches on the development of organic additives for the modification of Cu microstructure, the application of pulse and pulse-reverse electrodeposition, Cu-based alloy superfilling for improvement of reliability, and the enhancement of superfilling phenomenon to overcome the current problems are addressed in this review.