• Title/Summary/Keyword: Wafer Probe

Search Result 113, Processing Time 0.034 seconds

Si Deep Etching Process Study for Fine Pitch Probe Unit

  • Han, Myeong-Su;Park, Il-Mong;Han, Seok-Man;Go, Hang-Ju;Kim, Hyo-Jin;Sin, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.296-296
    • /
    • 2012
  • LCD panel 검사를 위한 Probe unit은 대형 TV 및 모바일용 스마트폰을 중심으로 각광을 받고 있는 소모성 부품으로 최근 pitch의 미세패턴화가 급속히 진행되고 있다. 본 연구에서는 Slit Wafer 제작 공정을 최적화하기 위해 25 um pitch의 마스크를 설계, 제작하였다. 단공과 장공을 staggered 형태로 배열하여 25 um/25 um line/space pitch로 설계하였다. 또한 단위실험을 위해 직접 25 um pitch로 설계하여, 동일한 실험조건을 적용하여 최적 조건을 찾고자 하였다. 반응변수는 Etch rate 및 profile angle로 결정하였으며, 약 200~400 um 에칭된 slit의 상단과 하단의 폭, 그리고 식각깊이를 SEM 측정사진을 통해 정한 후 etch rate 및 profile angle을 결정하였다. 인자는 식각속도 및 wall의 각도를 결정하는 식각 및 passivation 가스의 유량, chamber 압력(etching/passivation), 식각시간 등으로 정하였으며, 이들의 최대값과 최소값 2 수준으로 실험계획을 설계하였다. 식각 조건에 따라 8회의 실험을 수행하였다. 가스의 유량은 SF6 400 sccm, C4F8 400 sccm, 식각 싸이클 시간은 5.2~10.4 sec, passivation 싸이클시간 4 sec로 하였으며, 압력은 식각시 7.5 Pa, passivation 시 10 Pa로 할 경우가 가장 sharp하게 나타났다. Coil power 와 platen power는 각각 2.6 KW, 0.14 KW로 하였으며, 최적화를 위한 인자의 값들은 이 범위에서 조절하였다. 이러한 인자의 조건 조절을 통해 etch rate는 5.6 um/min~6.4 um/min, $88.9{\sim}89.1^{\circ}$의 profile angle을 얻을 수 있었다.

  • PDF

Tungsten With Tip Sharpening by Electrochemical Etching (전기화학적 에칭법에 의한 텅스텐 와이어의 Sharp tip 제조에 관한 연구)

  • 우선기;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Sharp tips are commonly used for applications in fields as diverse as nanolithography, lowvoltage field emitters, emitters, nanoelectroniecs, electrochemisty, cell biology, field-ion and electron microscopy. tungsten wire, mater만 used in this experiment, which test the chip of wafer has been used to the needle of probe card. Tungsten wire was sharpened by electrochemical etching methode to get a typical tip shape.

  • PDF

A Design and Manufacture on Sheet Resistance Measure Instrument of Semiconductor Wafers (반도체 웨이퍼 면저항 측정기의 설계제작)

  • Kang, Jeon-Hong;Kim, Han-Jun;Han, Sang-Ok;Kim, Jong-Suk;Ryu, Je-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2034-2036
    • /
    • 2005
  • Four Point Probe 방법을 이용한 반도체 wafer의 면저항 측정을 위하여 single configuration 기술을 적용한 회로를 설계 제작하였으며, 제작된 FPP장치의 면저항 측정범위는 $10{\sim}3000{\Omega}/sq.$ 이고 측정의 정확도는 약 0.5%이하이다.

  • PDF

Fabrication of a novel micromachined measurement device for temperature distribution measurement in the microchannel (마이크로채널 내의 온도 분포 측정을 위한 미소 측정 구조물의 제작)

  • Park, Ho-Joon;Lim, Geun-Bae;Son, Sang-Young;Song, In-Seob;Pak, James-Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1921-1923
    • /
    • 2001
  • In this work, an array of resistance temperature detector(RTD) was fabricated inside the microchannel in order to investigate in-situ flow characteristics. A rectangular straight microchannel, integrated with RTD's for temperature sensing and a heat source for generating the temperature gradient along the channel. were fabricated with the dimension of $200{\mu}m(W){\times}{\mu}m(D){\times}$48mm(L), while RTD measured precise temperatures at the inside-channel wall. 4" $525{\pm}25{\mu}m$ thick P-type <100> Si wafer was used as a substrate. For the fabrication of RTDs. 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, glass wafer was bonded with Si wafer by anodic bonding, therefore RTD was located inside the microchannel. The temperature distribution inside the fabricated microchannel was obtained from 4 point probe measurements and Dl water is used as a working fluid. Temperature distribution inside the microchannel was measured as a function of mass flow rate and heat flux. As a result, precise temperatures inside the microchannel could be obtained. In conclusion, this novel temperature distribution measurement system will be very useful to the accurate analysis of the flow characteristics in the microchannel.

  • PDF

Adhesion Characteristics of Acrylic Pressure Sensitive Adhesives on Thin Wafer Materials - Effect of Acrylic Copolymer Side Chain - (아크릴계 점착제와 초박형 웨이퍼소재와의 점착특성 - 아크릴 중합체의 측쇄의 영향 -)

  • Ryu, Chong-Min;Nam, Young-Hee;Lee, Seung-Hyun;Kim, Hyung-Il;Lim, Dong-Hyuk;Kim, Hyun-Joong;Kim, Kyung Man
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.134-140
    • /
    • 2009
  • The acrylic copolymers with variation in side chain were synthesized based on molecular design. Wettability and adhesion properties on the wafer surface were investigated for these acrylic copolymer pressure sensitive adhesives. Three-dimensional networks of linear acrylic copolymers were produced with epoxy-type Tetra-DX cross-linking agent. The effect of cross-linking on adhesion characteristics was investigated. The side chain of acrylic copolymer played more important role in wettability than the interfacial interaction. As the degree of cross-linking increased, both probe tack and peel strength decreased. Also, heat resistance measured by SAFT increased with cross-linking; however, it showed the deterioration when excess cross-linking agent was added.

  • PDF

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Study on Frictional Characteristics of Sub-micro Structured Silicon Surfaces (서브 마이크로 구조를 가진 실리콘 표면의 마찰 특성 연구)

  • Han, Ji-Hee;Han, Gue-Bum;Jang, Dong-Yong;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • The understanding of the friction characteristics of micro-textured surface is of great importance to enhance the tribological properties of nano- and micro-devices. We fabricate rectangular patterns with submicron-scale structures on a Si wafer surface with various pitches and heights by using a focused ion beam (FIB). In addition, we fabricate tilted rectangular patterns to identify the influence of the tilt angle ($45^{\circ}$ and $135^{\circ}$) on friction behaviour. We perform the friction test using lateral force microscopy (LFM) employing a colloidal probe. We fabricate the colloidal probe by attaching a $10{\pm}1-{\mu}m$-diameter borosilicate glass sphere to a tipless silicon cantilever by using a ultraviolet cure adhesive. The applied normal loads range between 200 nN and 1100 nN and the sliding speed was set to $12{\mu}m/s$. The test results show that the friction behavior varied depending on the pitch, height, and tilt angle of the microstructure. The friction forces were relatively lower for narrower and deeper pitches. The comparison of friction force between the sub-micro-structured surfaces and the original Si surface indicate an improvement of the friction property at a low load range. The current study provides a better understanding of the influence of pitch, height, and tilt angle of the microstructure on their tribological properties, enabling the design of sub-micro- and micro-structured Si surfaces to improve their mechanical durability.