• Title/Summary/Keyword: Wafer Position

Search Result 79, Processing Time 0.025 seconds

Design of Alignment Mark Stamper Module for LED Post-Processing

  • Hwang, Donghyun;Sohn, Young W.;Seol, Tae-ho;Jeon, YongHo;Lee, Moon G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.155-159
    • /
    • 2015
  • Light emitting devices (LEDs) are widely used in the liquid crystal display (LCD) industry, especially for LCD back light units. Therefore, much research has been performed to minimize manufacturing costs. However, the current process does not process LED chips from broken substrates even though the substrate is expensive sapphire wafer. This is because the broken substrates lose their alignment marks. After pre-processing, LED dies are glued onto blue tape to continue post-processing. If auxiliary alignment marks are stamped on the blue tape, post-processing can be performed using some of the LED dies from broken substrates. In this paper, a novel stamper module that can stamp the alignment mark on the blue tape is proposed, designed, and fabricated. In testing, the stamper was reliable even after a few hundred stamps. The module can position the stamp and apply the pattern effectively. By using this module, the LED industry can reduce manufacturing costs.

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.

The Develop and Research of EPD system for the semiconductor fine pattern etching (반도체 미세 패턴 식각을 위한 EPD 시스템 개발 및 연구)

  • Kim, Jae Pil;Hwang, WooJin;Shin, Youshik;Nam, JinTaek;Kim, hong Min;Kim, chang Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2015
  • There has been an increase of using Bosch Process to fabricate MEMS Device, TSV, Power chip for straight etching profile. Essentially, the interest of TSV technology is rapidly floated, accordingly the demand of Bosch Process is able to hold the prominent position for straight etching of Si or another wafers. Recently, the process to prevent under etching or over etching using EPD equipment is widely used for improvement of mechanical, electrical properties of devices. As an EPD device, the OES is widely used to find accurate end point of etching. However, it is difficult to maintain the light source from view port of chamber because of contamination caused by ion conflict and byproducts in the chamber. In this study, we adapted the SPOES to avoid lose of signal and detect less open ratio under 1 %. We use 12inch Si wafer and execute the through etching 500um of thickness. Furthermore, to get the clear EPD data, we developed an algorithm to only receive the etching part without deposition part. The results showed possible to find End Point of under 1 % of open ratio etching process.

ACCURACY OF DIGITAL MODEL SURGERY FOR ORTHOGNATHIC SURGERY: A PRECLINICAL EVALUATION (악교정 수술을 위한 디지털 모형 수술의 정확성 평가)

  • Kim, Bong-Chul;Park, Won-Se;Kang, Yon-Hee;Yi, Choong-Kook;Yoo, Hyung-Suk;Kang, Suk-Jin;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The accuracy of model surgery is one of important factors which can influence the outcome of orthognathic surgery. To evaluate the accuracy of digitalized model surgery, we tried the model surgery on a software after transferring the mounted model block into a digital model, and compared the results with that of classical manual model surgery. We could get the following results, which can be used as good baseline analysis for the clinical application. 1. We made the 3D scanning of dental model blocks, and mounted on a software. And we performed the model surgery according to the previously arranged surgical plans, and let the rapid prototyping machine produce the surgical wafer. All through these process, we could confirm that the digital model surgery is feasible without difficulties. 2. The digital model surgery group (Group 2) showed a mean error of $0.0{\sim}0.1mm$ for moving the maxillary model block to the target position. And Group 1, which was done by manual model surgery, presented a mean error of $0.1{\sim}1.2mm$, which is definitely greater than those of Group 2. 3. Remounted maxillary model block with the wafers produced by digital model surgery from Group 2 showed the less mean error (0.2 to 0.4 mm) than that produced by manual model surgery in Group 1 (0.3 to 1.4 mm). From these results, we could confirm that the digital model surgery in Group 2 presented less error than manual model surgery of Group 1. And the model surgery by digital manipulation is expected to have less influence from the individual variation or degree of expertness. So the increased accuracy and enhanced manipulability will serve the digital model surgery as the good candidate for the improvement and replacement of the classical model surgery, if careful preparation works for the clinical adjustment is accompanied.

Angle-Resolved Photoemission Spectroscopy and Raman Spectroscopy Study on the Quasi-free Standing Epitaxial Graphene on the 4H SiC(0001) surface

  • Yang, Gwang-Eun;Park, Jun;Park, Byeong-Gyu;Kim, Hyeong-Do;Jo, Eun-Jin;Hwang, Chan-Yong;Kim, Won-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.277-277
    • /
    • 2013
  • The epitaxial graphene on the 4H- or 6H-SiC(0001) surface has been intensively studied due to the possibility of wafer-scale growt. However the existence of interface layer (zero layer graphene) and its influence on the upper graphene layer have been considered as one of the main obstarcles for the industrial application. Among various methods tried to overcome the strong interaction with the substrate through the interface layer, it has been proved that the hydrogen intercalation successfully passivate the Si dangling bond of the substrate and can produce the quasi-free standing epitaxial graphene (QFEG) layers on the siC(0001) surface. In this study, we report the results of the angle-resolved photoemission spectroscopy (ARPES) and Raman spectroscopy for the QFEG layers produced by ex-situ and in-situ hydrogen intercalation.From the ARPES measurement, we confirmed that the Dirac points of QFEG layers exactly coincide with the Fermi level. The band structure of QFEG layer are sustainable upon thermal heating up to 1100 K and robust against the deposition of several metals andmolecular deposition. We also investigated the strain of the QFEG layers by using Raman spectroscopy measurement. From the change of the 2D peak position of graphene Raman spectrum, we found out that unlike the strong compressive strain in the normal epitaxial graphene on the SiC(0001) surface, the strain of the QFEG layer are significantly released and almost similar to that of the mechanically exfoliated graphene on the silicon oxide substrate. These results indicated that various ideas proposed for the ideal free-standing graphene can be tested based on the QFEG graphene layers grown on the SiC(0001) surface.

  • PDF

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment (웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 )

  • Lee Hyun Chul;Woo Ho Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

A study on the oxide semiconductor $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, solar cells fabricated by two source evaporation (이가열원(二加熱源) 증착법(蒸着法)에 이한 산화물(酸化物) 반도체(半導體) $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, 태양전지(太陽電池)에 관한 연구(硏究))

  • Jhoon, Choon-Saing;Kim, Yong-Woon;Lim, Eung-Choon
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.62-78
    • /
    • 1992
  • The solar cells of $ITO_{(n)}/Si_{(p)}$, which are ITO thin films deposited and heated on Si wafer 190[$^{\circ}C$], were fabricated by two source vaccum deposition method, and their electrical properties were investigated. Its maximum output is obtained when the com- position of the thin film consist of indium oxide 91[mole %] and thin oxide 9[mole %]. The cell characteristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min]. Also, we investigated the spectral response with short circuit current of the cells and found that the increasing of the annealing caused the peak shifted to the long wavelength region. And by experiment of the X-ray diffraction, it is shown to grow the grains of the thin film with increasment of annealing temperature. The test results from the $ITO_{(n)}/Si_{(p)}$ solar cell are as follows. short circuit current : Isc= 31 $[mW/cm^2]$ open circuit voltage : Voc= 460[mV] fill factor : FF=0.71 conversion efficiency : ${\eta}$=11[%]. under the solar energy illumination of $100[mW/cm^2]$.

  • PDF