• Title/Summary/Keyword: Wafer Position

Search Result 79, Processing Time 0.024 seconds

Optical Autofocus System for Wafer Steppers using PSD as the Position Sensor (PSD를 이용한 광학적 자동 촛점장치)

  • 박기수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.157-161
    • /
    • 1993
  • An optical autofocus system for a DUV KrF excimer laser wafer stepper was developed by using the PSD (Position Sensitive Detector) as the position sensor. The laser beam was incident on the surface of wafer and the reflected beam was magnified optically by a lens. And the beam was directed onto the surface of PSD by a mirror system. The spatial resolution of the autofocus system was found to be $0.03{\mu}m$.

  • PDF

A Wafer Alignment Method and Accuracy Evaluation (웨이퍼 정렬법과 정밀도 평가)

  • Park, Hong-Lae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.812-817
    • /
    • 2002
  • This paper presents a development of high accuracy aligner and describes a method to find the orientation of a substantially circular disk shaped wafer with at least one flat region on an edge thereof. In the developed system, the wafer is spun one 360 degree turn on a chuck and the edge position is measured by a linear array to obtain a set of data points at various wafer orientation. The rotation axis may differ from wafer center by an unknown eccentricity. The flat angle is found by fitting a cosine curve to the actual data to obtain a deviation. The maximum deviation is then corrected for errors due to a finite number of data points and wafer eccentricity by calculating an adjustment angle from data points on the wafer fiat. After determining the flat angle the wafer is spun to the desired orientation. The wafer eccentricity can be calculated from four of the data points located away from the flat edge region. and the wafer is then centered.

A Wafer Pre-Alignment System Using One Image of a Whole Wafer (하나의 웨이퍼 전체 영상을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.47-51
    • /
    • 2010
  • This paper presents a wafer pre-alignment system which is improved using the image of the entire wafer area. In the previous method, image acquisition for wafer takes about 80% of total pre-alignment time. The proposed system uses only one image of entire wafer area via a high-resolution CMOS camera, and so image acquisition accounts for nearly 1% of total process time. The larger FOV(field of view) to use the image of the entire wafer area worsen camera lens distortion. A camera calibration using high order polynomials is used for accurate lens distortion correction. And template matching is used to find a correct notch's position. The performance of the proposed system was demonstrated by experiments of wafer center alignment and notch alignment.

A Wafer Pre-Alignment System Using a High-Order Polynomial Transformation Based Camera Calibration (고차 다항식 변환 기반 카메라 캘리브레이션을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Wafer Pre-Alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least squares circle fitting. These data are utilized for the proper alignment of the wafer. For accurate alignments, camera calibration methods using high order polynomials are used for converting pixel coordinates into real-world coordinates. A complete pre-alignment system was constructed using mechanical and optical components and tested. Experimental results show that alignment of wafer center and orientation can be done with the standard deviation of 0.002 mm and 0.028 degree, respectively.

A Study on the FEM Analysis and Gripping Force Control of End-Effector for the Wafer Handling Robot System (Wafer 반송용 End-Effector의 FEM 해석 및 파지력 제어에 관한 연구)

  • 권오진;최성주;이우영;이강원;박원규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.31-36
    • /
    • 2003
  • On this study, an E.E(End-Effector) for the 300 mm wafer transfer robot system is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor controlled by microchip. To design, relationship between the gripping force and the wafer deformation is analyzed by FEM. By analytic results, the gripping force for 300 mm wafer is confirmed as 255~274 gf. From experimental results on gripping force, repeatable position accuracy and gripping cycle times in a wafer cleaning system, we confirmed that the suggested E.E was well designed to satisfiy on the required performance for 300 mm wafer transfer robot system.

  • PDF

Development of Hard Mask Strip Inspection System for Semiconductor Wafer Manufacturing Process (반도체 전공정의 하드마스크 스트립 검사시스템 개발)

  • Lee, Jonghwan;Jung, Seong Wook;Kim, Min Je
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.55-60
    • /
    • 2020
  • The hard mask photo-resist strip inspection system for the semiconductor wafer manufacturing process inspects the position of the circuit pattern formed on the wafer by measuring the distance from the edge of the wafer to the strip processing area. After that, it is an inspection system that enables you to check the process status in real time. Process defects can be significantly reduced by applying a tester that has not been applied to the existing wafer strip process, edge etching process, and wafer ashing process. In addition, it is a technology for localizing semiconductor process inspection equipment that can analyze the outer diameter of the wafer and the state of pattern formation, which can secure process stability and improve wafer edge yield.

θz Stage Design and Control Evaluation for Wafer Hybrid Bonding Precision Alignment (Wafer Hybrid Bonding 정밀 정렬을 위한 θz 스테이지 설계 및 제어평가)

  • Mun, Jea Wook;Kim, Tae Ho;Jeong, Yeong Jin;Lee, Hak Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.119-124
    • /
    • 2021
  • In a situation where Moore's law, which states that the performance of semiconductor integrated circuits doubles every two years, is showing a limit from a certain point, and it is difficult to increase the performance due to the limitations of exposure technology.In this study, a wafer hybrid method that can increase the degree of integration Various research on bonding technology is currently in progress. In this study, in order to achieve rotational precision between wafers in wafer hybrid bonding technology, modeling of θz alignment stage and VCM actuator modeling used for rotational alignment, magnetic field analysis and desgin, control, and evaluation are performed. The system of this study was controlled by VCM actuator, capactive sensor, and dspace, and the working range was ±7200 arcsec, and the in-position and resoultion were ±0.01 arcsec. The results of this study confirmed that safety and precise control are possible, and it is expected to be applied to the process to increase the integration.

Wafer Motion Control of Clean Tube System (클린튜브 시스템의 웨이퍼 운동 제어)

  • 신동헌;최철환;정규식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.475-481
    • /
    • 2004
  • This paper presents a force model of the clean tube system, which was developed as a means of transferring air-floated wafers inside a closed tube filled with super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafers motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes a control method to emit and stop a wafer at the center of a control unit. It reveals the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when the wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for the 12 inch wafer shows the validity of the proposed model and the algorithm.

Wafer Motion Control of a Clean Tube System (클린튜브 시스템의 웨이퍼 정지 제어)

  • 신동헌;최철환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.459-462
    • /
    • 2003
  • This paper presents a force model of the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafer motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes the control method to emit and stop a wafer at the center of a control unit. It shows the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when a wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for 12 inch wafer shows the validity of the proposed model and the algorithm.

  • PDF

Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation System

  • Moon, In-Ho;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1492-1501
    • /
    • 2006
  • A transportation system of single wafer has been developed to be applied to semiconductor manufacturing process of the next generation. In this study, the experimental apparatus consists of two kinds of track, one is for propelling a wafer, so called control track, the other is for generating an air film to transfer a wafer, so called transfer track. The wafer transportation speed has been evaluated by the numerical and the experimental methods for three types of nozzle position a..ay (i.e., the front-, face- and rear-array) in an air levitation system. Test facility for 300mm wafer has been equipped with two control tracks and one transfer track of 1500mm length from the starting point to the stopping point. From the present results, it is found that the experimental values of the wafer transportation speed are well in agreement with the computed ones. Namely, the computed values of the maximum wafer transportation speed $V_{max}$ are slightly higher than the experimental ones by about $15{\times}20%$. The disparities in $V_{max}$ between the numerical and the experimental results become smaller as the air velocity increases. Also, at the same air flow rate, the order of wafer transportation speeds is : $V_{max}$ for the front-array > $V_{max}$ for the face-array > $V_{max}$ for the rear-array. However, the face-array is rather more stable than any other type of nozzle array to ensure safe transportation of a wafer.