• Title/Summary/Keyword: WTI

Search Result 41, Processing Time 0.026 seconds

원유선물시장(原油先物市場)과 현물시장(現物市場)의 동태적통합(動態的統合) 및 효율성(效率性)

  • Park, Ju-Ho
    • Environmental and Resource Economics Review
    • /
    • v.6 no.2
    • /
    • pp.171-191
    • /
    • 1997
  • 83년 7월부터 NYMEX 선물시장에서 거래되기 시작한 원유선물은 90년대 들어 주식 채권 외환 등의 금융시장과 관련하여 크게 성장하고 있으며, 원유선물가격이 현물시장에서의 가격형성에 큰 영향을 미치고 있다. 따라서, 원유선물가격이 미래의 현물가격에 대한 최적의 예측치라고 하는 합리적기대모형(合理的期待模型)에 의거하여 원유선물 가격과 현물가격의 변화추이 및 그들 사이의 장(長) 단기(短期) 균형관계(均衡關係)(동태적통합(動態的統合))와 효율성(效率性)등을 일별(日別) NYMEX 선물유가(근월도래선물(近月到來先物)의 종가(終價))와 WTI 현물유가의 자료를 이용하여 계량분석하였다. 원유선물가격과 현물가격은 단위근(單位根)을 갖는 불안정(不安定)한 시계열이지만, 선물유가와 현물유가사이에는 공적분관계(共積分關係)(공통확률적추세(共通確率的趨勢))가 있어 장기적(長期的) 균형관계(均衡關係)가 존재하며, 또한 공시계열상관관계(共時系列相關關係)(공통안정적순환(共通安定的循環))가 있어 단기적(短期的) 균형관계(均衡關係)도 존재하는 것으로 보여진다. 그리고 선물유가는 미래의 현물유가에 대한 예측력이 있는 것으로 보여진다. 따라서, 원유선물가격이 미래의 현물가격에 대한 최적의 예측치라고 히는 합리적기대모형(合理的期待模型)과 일치하는 것으로 나타났다. 원유선물가격이 현물가격과 장(長) 단기적(短期的)으로 동태적(動態的)인 균형관계를 보이고 있으므로 정부의 합리적인 수입선다변화정책과 유가자유화에 따른 석유업계의 효율적인 운영방안의 하나로 원유선물시장의 활용이 더욱 더 필요할 것으로 생각된다.

  • PDF

The Impact of Investor Sentiment on Energy and Stock Markets-Evidence : China and Hong Kong

  • Ho, Liang-Chun
    • Journal of Distribution Science
    • /
    • v.12 no.3
    • /
    • pp.75-83
    • /
    • 2014
  • Purpose - The oil price affects company value, which is the present value of the expected cash flow, by affecting the discount rate and cash flow. This study examines the nonlinear relationships between oil price and stock price using the AlphaShares Chinese Volatility Index as the threshold. Research design, data, and methodology - Data comprise daily closing values of the Shanghai Stock Exchange Composite Index, Shenzhen Stock Exchange Composite Index, and Hang Seng Index of ChinaWest Texas Intermediate crude oil spot price and AlphaShares Chinese Volatility Index from May 25, 2007 to May 24, 2012. The Threshold Error Correction Model is used. Results - The results demonstrate different relationships between the stock price index and oil price under different investor sentiments; however, the stock price index and oil price could adjust to a long-term equilibrium the long-term causality tests between them were all significant. Conclusions - The relationship between the WTI and HANG SENG Index is more significant than the Shanghai Composites Index and Shenzhen Composite Index, when using the AlphaShares Chinese Volatility Index (ASC-VIX) as the investor sentiment variable and threshold.

The Impacts of Oil Price and Exchange Rate on Vietnamese Stock Market

  • NGUYEN, Tra Ngoc;NGUYEN, Dat Thanh;NGUYEN, Vu Ngoc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.143-150
    • /
    • 2020
  • This study aims to investigate the effect of oil price and exchange rate on the two Vietnamese stock market indices: VN index and HXN index. This study uses the daily data from August 1st 2000 to October 25th 2019 of the two Vietnamese stock indices: VN index and HNX index, the two oil price indices: BRENT and WTI, and the two exchange rates: US dollar to Vietnamese dong and Euro to Vietnamese dong. Due to the presence of heteroskedasticity in our data, we use GARCH (1,1) regression model to perform our analysis. Our findings show that the oil price has a significant positive effect on the two Vietnamese stock market indices. In terms of the stock index volatility, both the VN index and HNX index volatilities are negatively impacted by the return of oil price. While the conclusion about the impact of oil price remained consistent through all three robustness tests, the effect of exchange rate on Vietnamese stock market indices is not consistent. We find thatchanges of the USD/VND exchange rate significantly impact the return and volatility of HNX index only in GARCH (1,1) setting. Our analysis also survives a number of robustness tests.

The Risk-Return Relationship in Crude Oil Markets during COVID-19 Pandemic: Evidence from Time-Varying Coefficient GARCH-in-Mean Model

  • HONGSAKULVASU, Napon;LIAMMUKDA, Asama
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose the new time-varying coefficient GARCH-in-Mean model. The benefit of our model is to allow the risk-return parameter in the mean equation to vary over time. At the end of 2019 to the beginning of 2020, the world witnessed two shocking events: COVID-19 pandemic and 2020 oil price war. So, we decide to use the daily data from December 2, 2019 to May 29, 2020, which cover these two major events. The purpose of this study is to find the dynamic movement between risk and return in four major oil markets: Brent, West Texas Intermediate, Dubai, and Singapore Exchange, during COVID-19 pandemic and 2020 oil price war. For the European oil market, our model found a significant and positive risk-return relationship in Brent during March 26-April 21, 2020. For the North America oil market, our model found a significant positive risk return relationship in West Texas Intermediate (WTI) during March 12-May 8, 2020. For the Middle East oil market, we found a significant and positive risk-return relationship in Dubai during March 12-April 14, 2020. Lastly, for the South East Asia oil market, we found a significant positive risk return relationship in Singapore Exchange (SGX) from March 9-May 29, 2020.

A Study on the Relationship between Economic Change and Air Passenger Demand: Focus on Incheon International Airport (경제환경 변화와 항공여객 수요 간의 관계 분석: 인천국제공항을 중심으로)

  • Kim, Seok;Shin, Tae-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.52-64
    • /
    • 2019
  • The purpose of this study is to analyze the impact of macroeconomic variables on air passenger demand and provide useful information to airport managers and policymakers. Therefore, using the quarterly macroeconomic indicators from 2002 to 2017, the relationship with air passenger demand was demonstrated by multiple regression analysis. In the previous studies, they used GDP, Korea Treasury Bond, KOSPI index, USD/KRW Exchange Rate, and WTI Crude Oil Price variables. In this study, we used the Coincident Composite Index, Employment Rate, Consumer Sentiment Index, and Private Consumption Rate used as additional variables. It has confirmed that if the consumption of research results expands or the economic environment is right, it will affect the increase in international passengers. In other words, it confirmed that the overall economic situation acts as the main factor determining air passenger demand. It confirmed that the economic environment at the past has a significant impact on air passenger demand.

Relationship Between Stock Price Indices of Abu Dhabi, Jordan, and USA - Evidence from the Panel Threshold Regression Model

  • Ho, Liang-Chun
    • The Journal of Industrial Distribution & Business
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2013
  • Purpose - The paper tested the relationship between the stock markets of the Middle East and the USA with the oil price and US dollar index as threshold variables. Research design, data, and methodology - The stock price indices of the USA, the Middle East (Abu Dhabi, Jordan), WTI spot crude oil price, and US dollar index were daily returns in the research period from May 21, 2001 to August 9, 2012. Following Hansen (1999), the panel threshold regression model was used. Results - With the US dollar index as the threshold variable, a negative relationship existed between the stock price indices of Jordan and the USA but no significant result was found between the stock price indices of Abu Dhabi and the USA. Conclusions - The USA is an economic power today:even if it has a closer relationship with the US stock market, the dynamic US economy can learn about subsequent developments and plan in advance. Conversely, if it has an estranged relationship with the US stock market, thinking in a different direction and different investment strategies will achieve good results.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

The Asymmetric Response of Gasoline Prices to International Crude Oil Price Changes Considering Inventories (재고를 고려한 국제원유가격변동에 따른 휘발유 가격의 비대칭성 연구)

  • Bae, Jeeyoung;Kim, Soohyeon;Kim, Moonjung;Oh, Soomin;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.22 no.4
    • /
    • pp.643-670
    • /
    • 2013
  • This study analyzed the impact of crude oil inventory while gasoline price adjusts to international crude oil price(WTI) fluctuations. We mainly focused on asymmetric relationship between crude oil and petroleum product prices and added oil inventory as an variable, using the error correction model which is based on Borenstein et al.(1997). This paper selected the sample period from January 1988 to December 2012, analyzed the asymmetry of each intervals and the influence of crude oil inventory to the degree of asymmetry changes, both full period and five years period respectively. The results showed that when considering crude oil inventory, existence and degrees of time amount asymmetry varies.

Oil Price Forecasting Based on Machine Learning Techniques (기계학습기법에 기반한 국제 유가 예측 모델)

  • Park, Kang-Hee;Hou, Tianya;Shin, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.

Effects of OPEC Announcements in Different Periods of Oil Price Fluctuation (사건연구 방법론을 이용한 OPEC 생산량 발표의 원유시장 영향 분석)

  • Bae, Jee Young;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.26 no.3
    • /
    • pp.451-472
    • /
    • 2017
  • An OPEC production announcement is a major source of supply disruption that has a significant impact on the international crude oil market. In this study, the effects of OPEC's announcements are analyzed using event study methodology. Considering the oil price volatility and structural changes in the oil price, we divide the entire period into three periods and analyze the impact of OPEC's production quota announcements, including 'cut', 'hike', and 'maintain'. As a result of the analysis, we observe that the degree and direction of abnormal returns differ according to the announcements in each period. In addition, by subdividing oil price surge and plunge period into two sections, we analyze the effect of OPEC's 'maintain' announcements. During the oil price plunge period, the amount of abnormal returns was significant. This study provides policy implications for oil trading strategies and for the impact of OPEC announcements during periods of oil price fluctuation.